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Quantum chemistry by random walk. H 2p, H; D3h 1A'H 

H2 3:l ~, H4 1:l ~, Be 1 S 
James B. Anderson 

Department of Chemistry. Pennsylvania State University. University Park. Pennsylvania 16802 
(Received 20 June 1975; revised paper received 7 June 1976) 

The random-walk method of solving the Schrodinger equation for molecular wavefunctions is extended to 
incorporate the effects of electron spin in several one- to four-electron systems. Improved calculation 
procedures reduce computation requirements for high accuracy by a factor of about 10. Results are given 
for the systems H 2p, Hj D3h IA'I' H2 3~:, linear equidistant H4 I~;, and Be IS. 

I. INTRODUCTION 

The random-walk method! of solving the Schrodinger 
equation consists of a simple game of chance involving 
the random movement of particles in space subject to a 
variable probability of multiplication or disappearance. 
In an earlier investigation2 of the use of the method in 
determining the ground-state energy of the molecular 
ion H; we found computation requirements to be 20- 50 
times those of existing LCAO-MO-SCF-CI variational 
methods of similar accuracy. However, we estimated 
that computation requirements of the random-walk 
method might be reduced as much as a factor of 10 by 
improved procedures. We indicated that the method 
might be most useful for systems of four or more elec
trons provided the effects of electron spin (or particle 
indistinguishability) could be properly accounted for. 

In this paper we report improved computation pro
cedures which allow a greater time-step size and re
duce computation efforts by a factor of about 10 for a 
given level of accuracy. We also report the develop
ment of methods for treating electron spin in simple 
atomic and molecular systems. These developments 
are examined in applications to several one-, two-, 
and four-electron systems. 

In addition to those reported here there are a number 
of alternate approaches which may be used to improve 
the accuracy and reduce the computation requirements 
of the random walk method. Formulation of the prob
lem in terms of a trial wavefunction lJ!o such that a dif
ference {j = IJ! - lJ!o is calculated is an especially attrac
tive possibility. Given a trial wavefunction from any 
source, even from accurate variational calculations, 
the difference {j may, in prinCiple, be calculated and 
used to correct the trial wavefunction. Successive cal
culations offer the possibility of further corrections and 
wavefunctions of unlimited accuracy. The systematic 
errors associated with use of a finite step size are ab
sent in a Monte Carlo method developed by Kalos3 for 
solution of the Schrodinger equation in integral form. 
Following this approach Kalos, Levesque, and Verlet4 

have shown that use of a trial wavefunction allows eigen
values to be estimated without statistical error. 

II. THE RANDOM-WALK METHOD 

The "random-walk method is most easily described 
for a one-dimensional system. The Schrodinger equa
tion in imaginary time T= it for a single particle re
stricted to a line is given, in atomic units, by 

(1) 

in which V is the local potential and Vrer is an arbitrary 
reference potential. The equation has solutions for 
large T consisting of a spatial part ljJ(x) multiplying 
exponentially in time: 

ljJ(x, T)= ljJ(x) e·(E.Vref)T. 

When integration is carried out to large values of T the 
spatial part of the wavefunction approaches that for a 
solution to the time-independent Schrodinger equation 
with the eigenvalue E. 

The (normalized) solution ljJ(x) of the time-indepen
dent equation is independent of the initial conditions 
ljJ(x, 0) and the reference potential Vrer. The eigenval
ue E is lowest energy corresponding to the prescribed 
symmetry of the solution. 

In the random-walk method Eq. (1) is simulated by a 
process of movement, multiplication, and disappear
ance of imaginary particles initially distributed arbi
trarily on the line. To avoid confusion with the par
ticles of the phYSical system we refer to the imaginary 
particles as "psips." The behavior of a collection of 
psips may be described by the diffusion equation to 
which a first-order rate term is added: 

ac a2c 
8i=D8"X2- kC , (3) 

where C is the concentration of psips, D is the diffu
sion coefficient and k rate constant for disappearance 
(negative fOr multiplication). With an appropriate 
choice of constants Eq. (3) may be made identical to 
Eq. (1). Thus, the time-dependent Schrodinger equa
tion may be simulated by a process of diffUSion, multi
plication, and disappearance of psips. As time is ad
vanced one step AT each psip is moved at random right 
or left a distance determined by D. Then each psip is 
allowed to multiply or disappear with a probability de
pending on the value of k (or V - V ref) determined by the 
local potential energy. The process is repeated until 
the distribution of psips approaches a fluctuating steady
state distribution from which the eigenvalue E may be 
evaluated. 

In Ref. (2) we have provided a full description of 
computation procedures: details of the generalization 
to multidimensional systems, choice of step size, con
trol of the total number of psips by varying Vrer, eval
uation of E, and so forth. For the calculations re-
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4122 James B. Anderson: Quantum chemistry by random walk 

ported here the procedures were essentially identical 
to those of Ref. (2), except as indicated. Initial dis
tributions of psips in the multidimensional configura
tion space of electrons were obtained by random place
ment of electrons in the vicinity of the nuclei. The ap
proach to steady state required a time T of at least 
several times the relaxation time for diffusion L2/D, 
in which L is the approximate physical size (length) of 
the molecular system and D is the diffusion coefficient. 
The reference potential was adjusted to maintain a 
fixed number of psips and had no effect on the rate of 
approach to steady state. 

III. MODIFICATIONS FOR LARGER TIME STEPS 

The accuracy in determining an eigenvalue E by the 
random-walk method is limited primarily by the sta
tistical error associated with the random nature of the 
process and by the error introduced by use of a finite 
time step tlT. The statistical error in the calculated 
energy may be reduced by averaging E over a long time 
interval. For small values of tlT this requires a large 
number of time steps. If the process can be modified 
to allow larger values of tlT without introducing error, 
then the number of time steps and the computation re
quirements for a given accuracy can be reduced. Three 
such modifications are described below. 

A. Integration over the time step 

The multiplication or disappearance of a psip is 
governed by the first-order rate constant k, which is 
set equal to the quantity (V - Vrer ). The differential 
change in concentration due to multiplication or dis
appearance is given by 

BC 
- =-kC=- (V- V r)C at re . (4) 

For k > 0 the probability of disappearance for a psip in 
an infinitesimal interval at is kat. For k < 0 the prob
ability of multiplication (to two psips) of a psip is - kat. 

In our earlier study2 we used the terms Pb and Pd 

for the probability of birth of a new psip and disap
pearance of a psip, respectively, at the end of a time 
step. These were taken as the simple difference ex
pressions for the first-order rate process implied by 
Eq. (1): 

Pb =- (V- Vref)tlT, V < Vrer> 

P b =0, V> Vrer, 

Pd=(V- Vref)tlT, V> Vrer> 

Pd=O, V < Vrer. (5) 

After each time step, a random number NR in the in
terval (0, 1) was compared with P b (or P d ) for each psip 
and if smaller than P b (or P d ) then a birth (or disap
pearance) was completed. This procedure is accurate 
only in the limit of a small time step. 

Greater accuracy with large time steps may be ob
tained by use of the first order birth or disappearance 
expressions integrated over the time step: 

(6) 

(7) 

or 

(8) 

The corresponding expressions for Pb and Pd for each 
psip are 

V < Vrer, 

(9) 

V < Vrer. 

After each time step the value of Pb or Pd is computed 
for each psip. The birth term Pb will in general con-
s ist of an integer n = 0, 1, 2, . .. plus a fraction f less 
than unity. For multiplication (V < Vref ) of a psip n new 
psips are added and one more psip is added if f is 
greater than a random number selected in the interval 
(0,1). For disappearance (V> Vref) of a psip a random 
number in the interval (0, 1) is selected and if less than 
Pd the psip is removed. 

The revised expressions are exact in the limit of 
small tlT as are the original expressions. However, 
in the absence of psip movement or for constant V the 
new expressions are also exact for large tlT. Since 
psip movement does occur and thus V may change with 
time, the overall process of Simulating the Schrodinger 
equation remains exact only in the limit of small tlT, 

but the new expressions may be expected to reduce the 
error associated with finite values of tlT. 

A comparison of results with the original and the re
vised expressions is given for the molecular ion H; in 
Sec. V. 

B. Average potential for electrons near a nucleus 

Use of the integrated birth term of Eq. (9) can pro
duce a very high multiplication rate for psips corre
sponding to configurations with an electron near a nu
cleus. Allowances may be made in computation for 
handling a large increase in the number of psips, but 
since the potential energy approaches negative infinity 
as the electron approaches a nucleus, the possibility of 
exceeding storage capaCity cannot be eliminated. We 
found that placing an upper limit on Pb of twice the 
average number of psips had no detectable effect on the 
computed energy values for H atoms. However, it is 
more reasonable to use an average potential energy for 
electrons near a nucleus. Thus, for electrons within 
a radius Yc of a nucleus having charge c the potential 
was taken as the average over the volume enclosed by 
a shell of radius Yc: 

(10) 

The value of Yc was adjusted to give an upper limit of 
1000 for Pb. For the H atom with tlT = O. 010 a. u., this 
occurs with Yc =0.0022 a. u. 

This modification in procedure was used in all new 
calculations reported in Sec. V. 
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C. Node crossing and recrossing 

Wavefunctions for excited atomic or molecular states 
and for systems containing electrons of the same spin 
contain nodes on which <P = 0. 2 For the random-walk 
method these nodes may be regarded as sinks for 
psips-any psip moving across a node is caused to dis
appear. With use of a finite time step t:.T the move
ment of psips occurs in finite steps of variable size 
AX. For a psip located near a node and found on the 
allowed side of the node at both the beginning and end 
of a time step, there is a possibility that the pSip may 
have crossed and recrossed the node in the interval of 
the time step. In the limit of small t:.T this possibil
ity becomes negligible, but for finite step sizes the 
failure to eliminate psips subject to disappearance if 
their complete path were determined may cause an ap
preciable error. 

The probability of this cross/recross behavior is a 
function of distances x' and x " from a node at the be
ginning and end of the time step. Shown schematically 
in Fig. 1 are two paths for a psip moving from x' to 
x", from point A to point B. One path crosses and re
crosses the node; the other does not. The probability 
of motion from x' to x" is given by 

1 ( (x" _ X')2) 
PE =--exp - 2 2 

ilia a 
(11) 

where a is standard deviation in x for the time interval. 
The probability of motion to a point C, the image of 
point B in the plane of the node is given by 

(12) 

Since the probabilities of ending the step at points B 
and C once the node is reached must be equal, the 
probability Pc is equal to the probability of movement 
to point B by a path crossing and recrossing the node. 
The probability of crossing and recrossing the node in 
attaining point B is then given by Px , the ratio of Pc to 
P E , which may be expressed ,as 

( 4 ' ") Px = exp - :a; . (13) 

In executing a random-walk calculation for a system 
with nodes located symmetrically in the configuration 
space of the electrons consideration is limited to a 
single region of space partially bounded by nodes. At 
the end of each time step psips outside the region are 
eliminated. The cross/recross probability Px is in
corporated in the calculation by retaining the values x' 
and x" and computing P r at the end of each time step 
for psips inside the allowed region. If P r for a given 
psip is greater than a random number selected in the 
interval (0,1), then that psip is eliminated. 

Equation (13) and the calculation procedure indicated 
above apply to the case of a single plane nodal surface. 
In the case of multiple plane surfaces (which mayor 
may not intersect) Eq. (13) may be used to determine 
independently the probability of crossing and recrossing 
each of the nodal surfaces. The probability of a psip 
movement without crossing and recrossing a specific 
node i is given by (1- Pr)i and the probability of move
ment without crossing and recrossing any nodes is 
given by the product of these factors for all nodes. In 
the random-walk calculation a psip near a node is re
tained with this probability. The behavior with multiple 
planar nodes and with intersecting planar nodes is then 
estimated correctly. 

These procedures were used in calculations for 
H 2Pr, H2 3~: and H4 I~; as reported in Sec. V. In the 
case of "smooth" but nonplanar nodal surfaces, such as 
the spherical surfaces encountered for Be IS, Eq. (13) 
is exact only in the limit of small t:.T. In the calcula
tions for Be IS the formula and calculation procedures 
for plane surfaces were used with the simple substitu
tion of radial distances for x' and x". This represents 
an approximation, which is satisfactory for Be IS, but 
it may be unsatisfactory for other cases involving non
planar nodes. 

When a nodal surface passes through a nucfeus or 
through a region in which there is a large variation in 
potential energy with electron positions, the cross/re
cross correction terms are inaccurate for large time 
steps. Similarly, the use of an average potential ener
gy (V) for electrons near a nucleus is inaccurate in this 
situation. Thus it remains necessary to check the effect 
of time-step size by repeating calculations with differ
ent step sizes. 

A comparison of results for H 2px calculated with and 
without the recrOSSing correction is given in Sec. V. 
These procedures were used in all other calculations 
reported in Sec. V except those for H; which has no 
node in the ground-state wavefunction. 

IV. ELECTRON SPIN AND EXCITED STATES 

To be useful in determining the electronic energies 
of complex chemical systems any method of solving 
the Schrodinger equation must provide for the effects 
of electron spin. For the simplest case, in which the 
electrons are assumed to be noninteracting, the Pauli 
exclusion principle may be applied directly: No two 
electrons can have the same set of quantum numbers. 
For interacting electrons satisfactory solutions are 
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FIG. 2. Wavefunctions for two particles in a one-dimensional 
well. Distinguishable: (a) nj =1, n2=1; (b) nj =1, n2=2; (c) nj 
=1, n2=3. Indistinguishable: (d)nj=1, n2=2; (e)nj=l, n2=3. 

obtained by requiring the spatial part of the wavefunc
tion to be antisymmetric to the exchange of electrons 
of like spin. In variational calculations this is most 
easily accomplished by the use of Slater determinants 
which restrict the form of the solution. 

In the random-walk method the analytic form of the 
solution for the wavefunction cannot be specified in ad
vance. However, boundary conditions can be imposed 
in a manner to require the solution to be antisymmetric 
to the exchange of electrons of like spin. If the elec
tron configuration space is divided in a symmetric 

. fashion by one surface of 1/J = 0, i. e. , a node, for each 
possible pair of electrons of like spin, the solution ob
tained will have the appropriate antisymmetry when the 
sign of the wavefunction is chosen positive on one side 
and negative on the other side of each node. 

The idea is easily illustrated with the case of two 
noninteracting particles confined in a potential well or 
one-dimensional box as illustrated in Fig. 2. For a 
one-particle system the spatial part of the wavefunction 
is given by 

(14) 

and the lowest-energy wavefunction is obtained with 
the quantum number nl equal to unity. For two dis
tinguishable particles a satisfactory overall wavefunc
tion is given by the product 1/J12 = 1/JI (1) 1/J2(2) without re
strictions on the quantum numbers n 1 and n2 • The form 
of such solutions is indicated in Fig. 2, parts (a), (b), 
and (c), for nl = 1 and n2= 1, 2, and 3, respectively. 

If the two particles are indistinguishable then wave
functions with the required antisymmetry may be ob
tained by use of a determinant, 

(15) 

The form of such solutions is indicated in Fig. 2, parts 
(d) and (e), for nl = 1 and n2 = 2,3, respectively. The 
lowest-energy solution is that corresponding to part (d) 

in which the configuration space of the particles is 
di vided by a line on which 1/J =0. The same solution 
could be obtained by imposing the boundary condition 
</! = 0 for Xl = x 2 and finding the lowest-energy solution 
on one side of the boundary or by requiring that the 
wavefunction be non-existent or zero when Xl = x 2• The 
same energy is also obtained by requiring that Xl be 
less than X 2 and setting </! = 0 for Xl> x 2• 

The prescription for incorporating indistinguishabil
ity effects in a random-walk calculation is thus very 
simple: Divide the configuration space in half by a 
symmetric surface of </! = 0 once for each possible pair 
of indistinguishable particles and limit the solution to 
anyone of the separate regions of configuration space. 
For excited states add more symmetric surfaces of 
</!=O. 

There is, for systems of interacting particles, no 
reason to belive that an arbitrary symmetric division 
of configuration space will lead to the lowest-energy 
solution. A mathematically valid solution will be ob
tained but it is not necessarily the phYSically admis
Sible, lowest-energy solution. There are, however, 
qualitative arguments that suggest the division for the 
lowest-energy solution is obtained when the surface-to
volume ratio of the separated regions is smallest. Then, 
too, there is available a large amount of information on 
the nature of molecular wavefunctions from variational 
calculations. Most authors have not reported sufficient 
details of their variational wavefunctions to allow a 
quick determination of the location of the nodes, but the 
information is, in principle, available. 

The molecule H2 in the triplet state 3~~ has two elec
trons of like spin. The variational calculations of 
James, Coolidge, and Present5 give a reasonably ac
curate value for the energy of this state when the in
ternuclear distance is 1. 6 a. u. Their calculations 
were made with configuration interaction for a number 
of different sets of terms. In Fig. 3 the location of the 
nodes in the electron configuration space is shown for 
two of these calculations. In each case the location of 
the protons and one of the electrons is shown. The 
sign of the wavefunction is indicated according to the 
position of the second electron. For the functions 
used by James, Coolidge, and Present5 this sign is a 
function only of the position of the second electron 
along the axis of the molecule and its radial distance 
from the axis. Thus, a set of two-dimensional plots 
is sufficient for locating the node. We note for the 
calculation identified as F [Fig. 3, parts (a)-(d)] there 
is considerable curvature in the nodal surface when the 
first electron is outside the region between the protons, 
but within this region the surface is given approximately 
by 1/J = 0 for Zl = Z2 where Zj is the distance along the axis 
for electron i. For calculation H, which gives a slight
ly lower energy, the phenomenon is more evident. 

(We speculate that current methods for variational 
calculations might be improved by use of trial wave
functions which specify node locations. Once a crude 
unrestricted variational calculation has been done, the 
node locations will be evident on examination of the 
wavefunction. Then each term in the wavefunction may 
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FIG. 3. Node locations in calculations of James, Coolidge, 
and Present3 for H2 32::. The protons are indicated by open 
circles, the first electron by a filled circle and the node by a 
dashed line. The sign of the wavefunction is indicated accord
ing to the position of the second electron. Calculation F: (a)
(d). Calculation H: (e)-(h). 

be modified analytically to reproduce the node locations 
and no terms would be wasted simply to position the 
nodes. For example, in the calculations of James, 
Coolidge, and PresentS for H2 3~:, modifying the terms 
of the trial wavefunctibn to require that IjJ = 0 for Z I = Z2 

is likely to give a more accurate energy with fewer 
terms. ) 

For the lowest triplet state of the helium atom He 
1s2s Kostin and Steiglitz6 have found that a satisfactory 
energy is obtained when the six-dimensional configura
tion space is cut by a nodal surface corresponding to 
equal electron-nucleus radii, i. e., rl = r2' This is a 
plane in the orientation independent space (rl, r2 , e) 
in which e is the angle between the radii. 

Wavefunctions for electronic states of atoms and 
molecules are characterized by different symmetries 
in the configuration space of the electrons. For a 
particular set of states specified by the symmetry of 
its wavefunctions, as for H2 the 3~: states, the low
est-energy state is that with the least number of nodal 
surfaces. States of the same symmetry but with more 
nodes have higher energies. In specifying node loca
tions for random-walk calculations, one may restrict 
the choices to conform to a particular symmetry and 
number of nodes, thus specifying a particular elec
tronic state. In a random-walk calculation, as in a 
variational calculation, the node locations must be 
varied subject to these restrictions to determine the 
lowest energy and, hence, the energy of the state con
sidered. 

In the absence of more definite rules for locating the 
nodal surfaces, we must consider random-walk calcu
lations as variational in nature when determining the 

energies of molecules with electrons of like spin. The 
use of arbitrary nodal surfaces does not necessarily 
lead to a physically admissible solution of the Schro
dinger equation having continuous derivatives of the 
wave function across the nodal surfaces. Although we 
find the calculated energies to be insensitive to small 
changes in node positions, the variation principle must 
be applied in determining accurate energies for sys
tems with unspecified nodes. For the molecular states 
considered in Sec. V the node locations are specified 
in advance. For more complex systems the locations 
are not known and it will be necessary to vary node 
positions for assurance that energies are not lower 
than those calculated. However, examination of wave
functions for these more complex systems may reveal 
simple criteria for locating nodes. 

V. RESULTS 

As noted previously the calculation procedures used 
in determining the eigenvalues for the systems treated 
are described in Ref. 2. In each calculation the total 
number of psips was maintained near 1000 by variation 
of Vret • The other variable quantities-time step size 
tiT and steady-state time span for evaluating energy
are given below. The probable error indicated with 
each reported energy is the probable statistical error 
as determined from the variance in calculated energy 
over the time span and excludes systematic error. 
Since the computer storage requirements for deter
mining average psip concentrations within a multidi
mensional configuration space were prohibitive, de
tailed examinations of wavefunctions and comparisons 
with those determined by other methods were not pos
sible. 

+ 'A' A. H3D3h I 

We have repeated our earlier calculations2 for the 
ground state of the system H; using the birth and dis
appearance terms given by Eq. (9) and an average po
tential for an electron near a nucleus given by Eq. (10). 
Except for these changes the method used is identical 
to that used previously. 2 A single configuration of H; 
was examined in each study-the equilateral triangle 
with side length 1. 66 a. u. The earlier calculations 
gave an energy of - 1. 344 ± 0.013 a. u. which may be 
compared to the lowest-energy variational result of 
- 1. 343 a. u. determined by Salmon and Poshusta. 7 

The effect of time-step size in the earlier calcula
tions is indicated in Fig. 4 by the open circles. The 
error bars shown indicate the probable statistical er
ror in the energy as determined by repetition of the 
calculations. 

Also shown in Fig. 4 is the effect of time-step size 
with the revised expressions for Pb and Pd for step 
sizes up to O. 020 a. u. The error introduced by a step 
size of O. 020 a. u. appears to be negligible in compari
son to the statistical error. The point at tiT= O. 020 
was determined from a set of 30 calculations, each 
with a transient time span of 9 a. u. followed by a span 
of 12 a. u. from which the energy was determined. The 
average energy is - 1. 3414 a. u. with a probable sta-
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FIG. 4. Variation of calculated total energy for H; with time
step size. Open circles: original method, from Ref. 2. Filled 
circles: revised method. 

tistical error of O. 0043 a. u. as determined from the 
variance of the energies in the 30 independent runs. 

The total computation time for the point at AT=0.020 
a. u. was 73 min on the IBM 370-168 computer used. In 
our previous study similar accuracy was estimated to 
require 625 min. Variational calculations of compa
rable accuracy by Duben and Lowes and by Csizmadia 
et al. 9 required 30 min on an IBM 360-67 and 15 min 
on an IBM 7094II, respectively. These correspond 
roughly to 30 min and 7-8 min on an IBM 370-168. Thus, 
the new birth and death terms cut the computation re
quirements of the random-walk method by a factor of 
about 10. While comparisons of computation effort are 
somewhat uncertain, especially when further optimiza
tion of computer programs is possible, it is apparent 
that the random-walk method is nearly competitive with 
variational methods for the two-electron H; system. 

B. H 2p 

The wavefunction for the 2px state of the H atom con
tains a single nodal plane at x = 0 in the Cartesian co
ordinate system with the origin at the proton. Random
walk calculations were carried out for this system using 
the birth and disappearance terms and the average po
tential terms described in Sec. II. Several sets of 
calculations were made with the cross/recross pro
cedure of Sec. II and, for comparison, several were 
made without it. 

The calculation method was essentially the same as 
that for H; except that the available configuration space 
was limited to the region with x> O. Psips crossing the 
plane x= 0 were eliminated. Additional psips were 
eliminated with probability Px when the cross/recross 
correction was used. 

The energies computed are shown in Fig. 5. The 

open circles indicate values of E for four runs without 
the cross/recross correction. It may be seen that 
there is a Significant trend with increasing AT away 
from the exact analytical result of - O. 125 a. u. The 
cross/recross term was incorporated in two runs at 
AT= O. 020 a. u. and 0.050 a. u. indicated by the filled 
circles. For AT = 0.020 a. u. the energy determined 
over a span of 500 a. u. is - O. 12575 ± O. 00068 a. u. 
For AT = 0.050 a. u. the energy from a span of 700 a. u. 
is - O. 12303 ± 0.00041 a. u. 

The results show a marked improvement in accura
cy is obtained by introducing the cross/recross terms. 
For AT= 0.050 there remains a significant error due to 
step size as indicated by the absolute error of 0.00197 
a. u. compared to the probable statistical error of 
0.00041 a. u. However, it appears the use of the cor
rection term allows AT to be increased by a factor of 
10 without a sacrifice in accuracy. 

C. H2 3~: 

Calculations of the lowest triplet state of H2 , the 36 : 
state, were carried out for an internuclear separation 
of 1. 4 a. u. The node location was specified as </J = 0 for 
21 = 22' where 2j is position along the axis of the mole
cule for electron i. The three corrections for large 
time steps outlined in Sec. II were incorporated in the 
calculat ions. 

Two time-step sizes were used: AT= O. 010 a. u. and 
AT= O. 020 a. u. The total time span for evaluating the 
energy was in each case 70 a. u. The calculated ener
gies were - 0.7851 ± 0.0036 a. u. for AT= 0.010 a. u. 
and - O. 7799 ± 0.0041 a. u. for AT= O. 020 a. u. These 
values may be compared with the essentially exact val
ue - O. 7831 a. u. determined by Kolos and Roothaan. 10 

D. Linear symmetric H4 1~; 

Calculations for linear, symmetric, equidistant H4 
were carried out with an internuclear spacing of 1. 67 
a. u. Node locations in the configuration space of the 
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FIG. 5. Variation of calculated energy for H 2px with time
step size. Open circles: calculated without node recrossing 
correction. Filled circles: with node recrossing correction. 
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four electrons were specified as ~ = 0 for ZI = Z2 and 
~ = 0 for Z3 = Z4 with the protons lying on the z axis. This 
corresponds to a II;; state. Two step- sizes were used. 
The total time spans and computed energies are as fol
lows: ~T=0.010a.u., span=200a.u., E=-2.2408 
±0.0340and~T=0.020, span=200a.u., E=-2.2612 
± O. 0212 a. u. 

These energies may be compared with the lowest
energy variational result, - 2. 2615 a. u., determined 
by Bender and Schaefer. 11 With a correction of 0.0175 
a. u., twice the error in calculations for H2 II;; at 1. 42 
a. u. by Bender and Schaefer with the same basis set, 
the true energy may be roughly estimated to be 
- 2. 2790 a. u. 

Our H4 program was checked with calculations for 
two hydrogen molecules II;; at 1. 4 a. u. separated by 
100 a. u. The energy calculated with ~T= O. 010 a. u. 
and a time span of 100 a. u. was - 2. 3286 ± O. 0159 a. u. 
This is O. 0204 a. u. higher than the exact value of 
- 2. 3490 a. u. 10 

For the ground-state beryllium atom we chose the 
node locations as ~;= 0 at rl = r2 and ~ = 0 at r3 = r4 where 
r i is the electron-nucleus distance. Calculations were 
carried out with two time-step sizes. For ~T= O. 005 
a. u. a total span of 80 a. u. gave an energy of - 14. 596 
± O. 060 a. u. For ~T;= O. 010 a. u. with the same span 
the energy was - 14. 894 ± 0.045 a. u. These values may 
be compared with the value determined from spectro
scopic measurements, lZ - 14.669 a. u. (adjusted to a 
reduced mass of unity for the electron in the Be atom). 
The corresponding Hartree-Fock energy13 is - 14. 573 
a. u. and a recent variational calculation by Nesbet14 
yields - 14.665 a. u. (without a relativistic correction). 

VI. DISCUSSION 

While the results given in Sec. V represent no ad
vance in knowledge for the several systems considered, 
they do indicate, in general, that the random-walk 
method can be successfully utilized in determining ener
gies of these systems. Neither variational methods 
nor the random-walk method can compete with direct 
analytic solution in the case of the H atom. For Hz and 
Be the random-walk method is unlikely to compete with 
existing variational methods such as those used by 
Kolos and Roothaan lO for Hz and by Nesbet 14 for Be. For 
H; we estimate the calculation effort for random-walk 
calculations is now only two to five times that for vari
ational calculations of similar accuracy. 

For linear H4 the comparison of variational and 
random-walk methods is clouded by the uncertainty in 
the exact value of the energy. Both the random-walk 
calculations and the variational calculations11 give en
ergies about O~ 02 a. u. higher than the roughly esti
mated true energy. The random-walk result for H2 
+ H2 with the same program is also O. 02 a. u. higher 
than the exact result, but this error is approximately 

equal to the probable statistical error. Further cal
culations to reduce the statistical error in the random
walk results may resolve these questions (or perhaps 
indicate a systematic error in the H4 and H2 + H2 cal
culations). 

Applications of the random-walk method to systems 
more complex than those considered here will require 
a detailed knowledge of node positions. The general 
requirements for physically admissible wavefunctions 
were outlined in terms of electron spin and symmetry 
properties in 1925-26 by Pauli, 15 Dirac, 16 and Heisen
berg. 17 These requirements were placed in the frame
work of group theory in 1927-28 by Wigner, 18 Hund, 19 
and Heitler. 20 In this period node locations and prop
erties were carefully considered. With the advent of 
Slater determinants21 in 1929 the problem of node loca
tions was effectively solved for variational calculations. 
It was then unnecessary to consider the details of node 
structure in solving the Schrodinger equation. For the 
random-walk method to succeed in its present form 
node structure must again be considered in detail. Z2 
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