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We introduce a novel methodology for sampling from a sequence
of probability distributions of increasing dimension and estimating
their normalizing constants. These problems are usually addressed us-
ing Sequential Monte Carlo (SMC) methods. The alternative Sequen-
tially Interacting Markov Chain Monte Carlo (SIMCMC) scheme pro-
posed here works by generating interacting non-Markovian sequences
which behave asymptotically like independent Metropolis-Hastings
(MH) Markov chains with the desired limiting distributions. Con-
trary to SMC methods, this scheme allows us to iteratively improve
our estimates in an MCMC-like fashion. We establish convergence of
the algorithm under realistic verifiable assumptions and demonstrate
its performance on several examples arising in Bayesian time series
analysis.

1. Introduction. Let us consider a sequence of probability distribu-
tions {πn}n∈T where T = {1, 2, ..., P}, which we will refer to as “target”
distributions. We shall also refer to n as the time index. For ease of presen-
tation, we shall assume here that πn (dxn) is defined on a measurable space
(En,Fn) where E1 = E, F1 = F and En = En−1 × E, Fn = Fn−1 ×F and
we denote xn = (x1, ..., xn) where xi ∈ E for i = 1, ..., n. Each πn (dxn) is
assumed to admit a density πn (xn) with respect to a σ−finite dominating
measure denoted dxn and dxn = dxn−1 × dxn. Additionally, we have

πn (xn) =
γn (xn)

Zn

where γn : En → R+ is known pointwise and the normalizing constant Zn

is unknown.
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2 A. BROCKWELL ET AL.

In a number of important applications, it is desirable to be able to sample
from the sequence of distributions {πn}n∈T and to estimate their normaliz-
ing constants {Zn}n∈T; the most popular statistical application is the class
of non-linear non-Gaussian state-space models detailed in Section 4. In this
context, πn is the posterior distribution of the hidden state variables from
time 1 to n given the observations from time 1 to n and Zn is the marginal
likelihood of these observations. Many other applications - including contin-
gency tables and population genetics - are discussed in [6], [10] and [19].

A now standard approach to solve this class of problems relies on Se-
quential Monte Carlo (SMC) methods; see [10] and [19] for a review of the
literature. In the SMC approach, the target distributions are approximated
by a large number of random samples - termed particles - which are carried
forward over time by using a combination of sequential importance sam-
pling and resampling steps. These methods have become the tools of choice
for sequential Bayesian inference but, even when there is no requirement for
‘real-time’ inference, SMC algorithms are increasingly used as an alternative
to MCMC; see for example [5], [7] and [19] for applications to econometrics
models, finite mixture models and contingency tables. They also allow us
to implement goodness-of-fit tests easily in a time series context -e.g. [4]-
whereas a standard MCMC implementation is cumbersome [12]. Moreover,
they provide an estimate of the marginal likelihood of the data.

The SMC methodology is now well-established and many theoretical con-
vergence results are available [6]. Nevertheless, in practice, it is typically
impossible to determine beforehand the number of particles necessary to
achieve a fixed precision for a given application and users typically per-
form multiple runs for an increasing number of particles until stabilization
of the Monte Carlo estimates is observed. Moreover, SMC algorithms are
substantially different from MCMC algorithms and can appear difficult to
implement for non-specialists.

In this paper we propose an alternative to SMC named Sequentially In-
teracting Markov Chain Monte Carlo (SIMCMC). SIMCMC methods allow
us to compute Monte Carlo estimates of the quantities of interest iteratively
as they are, for instance, when using MCMC methods. This allows us to
refine the Monte Carlo estimates until a suitably chosen stopping time. Fur-
thermore, for people familiar with MCMC methods, SIMCMC methods are
somewhat simpler than SMC methods to implement, because they only rely
on MH steps. However, SIMCMC methods are not a class of MCMC meth-
ods. These are non-Markovian algorithms which can be interpreted as an
approximation of P ‘ideal’ standard MCMC chains. It is based on the same
key idea as SMC methods; that is as πn+1 (xn) =

∫
πn+1 (xn+1) dxn+1 is of-
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SEQUENTIALLY INTERACTING MCMC 3

ten ‘close’ to πn (xn), it is sensible to use πn (xn) as part of a proposal distri-
bution to sample πn+1 (xn+1). In SMC methods, the correction between the
proposal distribution and the target distribution is performed using Impor-
tance Sampling whereas in SIMCMC methods it is performed using an MH
step. Such a strategy is computationally much more efficient than sampling
separately from each target distribution using standard MCMC methods
and also provides direct estimates of the normalizing constants {Zn}n∈T.

The potential real-time applications of SIMCMC methods are also worth
commenting on. SMC methods have been used in various real-time engineer-
ing applications, for example, in neural decoding [2] and in target tracking
[13]. In these problems, it is important to be able to compute functionals
of the posterior distributions of some quantity of interest, but it must also
be done in real-time. SMC methods work with collections of particles that
are updated sequentially to reflect these distributions. Clearly, in such real-
time problems it is important that the collections of particles are not too
large, or else the computational burden can cause the SMC algorithm to
fall behind the system being analyzed. SIMCMC methods provide a very
convenient way to make optimal use of what computing power is available.
Since SIMCMC works by adding one particle at a time to collections rep-
resenting distributions, we can simply run it continually in between arrival
of successive observations, and it will accrue as many particles as it can in
whatever amount of time is taken.

Related ideas where we also have a sequence of nested MCMC-like chains
‘feeding’ each other and targeting a sequence of increasingly complex dis-
tributions have recently appeared in statistics [17] and physics [21]. In the
equi-energy sampler [17], the authors consider a sequence of distributions
indexed by a temperature and an energy truncation whereas in [21] the
authors consider a sequence of coarse-grained distributions. It is also pos-
sible to think of SIMCMC methods and the algorithms in [17] and [21] as
non-standard adaptive MCMC schemes [1], [24] where the parameters to be
adapted are probability distributions instead of finite-dimensional param-
eters. Our convergence results rely partly on ideas developed in this field
[1].

The rest of the paper is organized as follows. In Section 2, we describe
SIMCMC methods, give some guidelines for the design of efficient algo-
rithms and discuss implementation issues. In Section 3, we present some
convergence results. In Section 4, we demonstrate the performance of this
algorithm for various Bayesian time series problems and compare it to SMC.
Finally we discuss a number of further potential extensions in Section 5. The
proofs of the results in Section 3 can be found in Appendix A.
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2. Sequentially Interacting Markov Chain Monte Carlo.

2.1. The SIMCMC Algorithm. Let i be the iteration counter. The SIM-

CMC algorithm constructs P sequences
{
X

(i)
1

}
,
{
X

(i)
2

}
, . . . ,

{
X

(i)
P

}
. In Sec-

tion 3, we establish weak necessary conditions ensuring that as i approaches

infinity, the distribution of X
(i)
n approaches πn; we will assume here that

these conditions are satisfied to explain the rationale behind our algorithm.
To specify the algorithm, we require a sequence of P proposal distributions,
specified by their densities

q1(x1), q2(x1, x2), . . . , qP (xP−1, xP ).

Each qn : En−1 × E → R+ (E−1 = ∅) is a probability density in its last ar-
gument xn with respect to dxn, which may depend (for n = 2, . . . , P ) on the
first argument. Proposals are drawn from q1(·) for updates of the sequence

{X
(i)
1 }, from q2(·) for updates of the sequence {X

(i)
2 }, and so on. (Selection

of proposal distributions is discussed below.) Based on these proposals, we
define the weights

w1 (x1) =
γ1 (x1)

q1 (x1)
,

wn (xn) =
γn (xn)

γn−1 (xn−1) qn (xn−1, xn)
, n = 2, . . . , P.(2.1)

For any measure µn−1 on (En−1,Fn−1), we define

(
µn−1 × qn

)
(dxn) = µn−1 (dxn−1) qn (xn−1, dxn)

and

(2.2) Sn = {xn ∈ En : πn (xn) > 0} .

We also denote by π̂(i)
n the empirical measure approximation of the target

distribution πn given by

(2.3) π̂(i)
n (dxn) =

1

i + 1

i∑

m=0

δ
X

(m)
n

(dxn) .

Intuitively, the SIMCMC algorithm proceeds as follows. At each iteration

i of the algorithm, the algorithm samples X
(i)
n for n ∈ T by first sampling

X
(i)
1 , then X

(i)
2 and so on. For n = 1,

{
X

(i)
1

}
is a standard Markov chain gen-

erated using an independent MH sampler of invariant distribution π1 (x1)
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and proposal distribution q1 (x1). For n = 2, we would like to approximate
an independent MH sampler of invariant distribution π2 (x2) and proposal
distribution (π1×q2) (x2). As it is impossible to sample from π1 exactly, we

replace π1 at iteration i by its current empirical measure approximation π̂
(i)
1 .

Similarly for n > 2, we approximate an MH sampler of invariant distribution
πn (xn) and proposal distribution (πn−1×qn) (xn) by replacing πn−1 at iter-

ation i by its current empirical measure approximation π̂
(i)
n−1. The sequences{

X
(i)
2

}
, . . . ,

{
X

(i)
P

}
generated this way are clearly non-Markovian.

Sequentially Interacting Markov Chain Monte Carlo

• Initialization, i = 0
• For n ∈ T, set randomly X

(0)
n = x

(0)
n ∈ Sn.

• For iteration i ≥ 1
• For n = 1

• Sample X
∗(i)
1 ∼ q1 (·).

• With probability

(2.4) α1(X
(i−1)
1 ,X

∗(i)
1 ) = 1 ∧

w1

(
X

∗(i)
1

)

w1

(
X

(i−1)
1

)

set X
(i)
1 = X

∗(i)
1 , otherwise set X

(i)
1 = X

(i−1)
1 .

• For n = 2, . . . , P

• Sample X
∗(i)
n ∼

(
π̂

(i)
n−1 × qn

)
(·).

• With probability

(2.5) αn(X(i−1)
n ,X∗(i)

n ) = 1 ∧
wn

(
X

∗(i)
n

)

wn

(
X

(i−1)
n

)

set X
(i)
n = X

∗(i)
n , otherwise set X

(i)
n = X

(i−1)
n .

The (ratio of) normalizing constants can easily be estimated by

Ẑ1
(i)

=
1

i

i∑

m=1

w1

(
X

∗(m)
1

)
,

̂
(

Zn

Zn−1

)(i)

=
1

i

i∑

m=1

wn

(
X∗(m)

n

)
.(2.6)
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6 A. BROCKWELL ET AL.

Equation (2.6) follows from the identity

Zn

Zn−1
=

∫
wn (xn) (πn−1 × qn) (dxn)

and the fact that asymptotically (as i → ∞) X
∗(i)
n is distributed according

to (πn−1×qn) (xn) under weak conditions given in Section 3.

2.2. Algorithm Settings. Similarly to SMC methods, the performance of
the SIMCMC algorithm depends heavily on the selection of the proposal
distributions. However, it is possible to devise some useful guidelines for
this sequence of (pseudo-)independent samplers, using reasoning similar to

that adopted in the SMC framework. Asymptotically, X
∗(i)
n is distributed

according to (πn−1×qn) (xn) and wn(xn) is just the importance weight (up to
a normalizing constant) between πn(xn) and (πn−1×qn) (xn). The proposal
distribution minimizing the variance of this importance weight is simply
given by

(2.7) qopt
n (xn−1, xn) = πn (xn−1, xn)

where πn (xn−1, xn) is the conditional density of xn given xn−1 under πn,
that is

(2.8) πn (xn−1, xn) =
πn (xn)

πn (xn−1)
.

In the SMC literature, πn (xn−1, xn) is called the ‘optimal’ importance den-
sity [9]. This yields

(2.9) wopt
n (xn) ∝ πn/n−1 (xn−1)

where

(2.10) πn/n−1 (xn−1) =
πn (xn−1)

πn−1 (xn−1)

with

πn (xn−1) =

∫

E
πn (xn) dxn.

In this case, as wopt
n (xn) is independent of xn, the algorithm described above

can be further simplified. It is indeed possible to decide whether to accept
or reject a candidate even before sampling it. This is more computationally
efficient because if the move is to be rejected there is no need to sample
the candidate. In most applications, it will be difficult to sample from (2.7)
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and/or to compute (2.9) as it involves computing πn (xn−1) up to a nor-
malizing constant. In this case, we recommend approximating (2.7). Similar
strategies have been developed successfully in the SMC framework [3], [9],
[20], [23]. The advantages of such sampling strategies in the SIMCMC case
will be demonstrated in the simulation section.

Generally speaking, most of the methodology developed in the SMC set-
ting can be directly reapplied here. This includes the use of Rao-Blackwellisation
techniques to reduce the dimensionality of the target distributions [9], [20]
or of auxiliary particle-type ideas where we build target distributions biased
towards ‘promising’ regions of the space [3], [23].

2.3. Implementation Issues.

2.3.1. Burn-in and Storage requirements. We have presented the algo-
rithm without any burn-in. This can be easily included if necessary by con-
sidering at iteration i of the algorithm

π̂(i)
n (dxn) =

1

i + 1 − l(i, B)

i∑

m=l(i,B)

δ
X

(m)
n

(dxn),

where
l(i, B) = 0 ∨ ((i − B) ∧ B)),

where B is an appropriate number of initial samples to be discarded as
burn-in. Note that when i ≥ 2B, we have l(i, B) = B.

Note that in its original form, the SIMCMC algorithm requires storing

the sequences
{
X

(i)
n

}

n∈T
. This could be expensive if the number of target

distributions P and/or the number of iterations of the SIMCMC are large.
However, in many scenarios of interest, including non-linear non-Gaussian
state-space models or the scenarios considered in [7], it is possible to dras-
tically reduce these storage requirements as we are only interested in esti-
mating the marginals {πn (xn)} and we have wn (xn) = wn (xn−1, xn) and

qn (xn−1, xn) = qn (xn−1, xn). In such cases, we only need to store
{
X

(i)
n

}

n∈T
,

resulting in significant memory savings.

2.3.2. Combining Sampling Strategies. In practice, we can combine the
SIMCMC strategy with SMC methods; that is we can generate say N (ap-
proximate) samples from {πn}n∈T

then we can use the SIMCMC strategy
to increase the number of particles until the Monte Carlo estimates stabi-
lize. We emphasize that SIMCMC will be primarily useful in the context
where we do not have a predetermined computational budget. Indeed, if the
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8 A. BROCKWELL ET AL.

computational budget is fixed, then we could also switch the iteration i and
time n loops in the SIMCMC algorithm to obtain better estimates.

2.4. Discussion and Extensions. Standard MCMC methods do not ad-
dress the problem solved by SIMCMC methods. Trans-dimensional MCMC
methods [15] allow us to sample from a sequence of ‘related’ target distri-
butions of different dimensions but require the knowledge of the ratio of
normalizing constants between these target distributions. Simulated tem-
pering and parallel tempering require all target distributions to be defined
on the same space and rely on MCMC kernels to explore each target dis-
tribution; see [18] for a recent discussion of such techniques. As mentioned
earlier in the introduction, ideas related to SIMCMC where a sequence of
‘ideal’ MCMC algorithms is approximated have recently appeared in statis-
tics [17] and physics [21]. However, contrary to these algorithms, the target
distributions considered here are of increasing dimension and the proposed
interacting mechanism is simpler. Whereas the equi-energy sampler [17] al-
lows ‘swap’ moves between chains, we only use the samples of the sequence{
X

(i)
n

}
to feed

{
X

(i)
n+1

}
but

{
X

(i)
n+1

}
is never used to generate

{
X

(i)
n

}
.

There are many possible extensions of the SIMCMC algorithm. In this
respect the SIMCMC algorithm is somehow a proof-of-concept algorithm
demonstrating that it is possible to make sequences targeting different dis-
tributions interact without the need to define a target distribution on an
extended state-space. For example, a simple modification of the SIMCMC

algorithm can be easily parallelized. Instead of sampling our candidate X
∗(i)
n

at iteration i according to (π̂
(i)
n−1 × qn) (·) we can sample it instead from

(π̂
(i−1)
n−1 × qn) (·): this allows us to simulate the sequences

{
X

(i)
n

}
on P par-

allel processors. It is straightforward to adapt the convergence results given
in Section 3 to this parallel version of SIMCMC.

In the context of real-time applications where πn (xn) is typically the
posterior distribution p (xn| y1:n) of some states xn given the observations
y1:n, SIMCMC methods can also be very useful. Indeed, SMC methods can-
not easily address situations where the observations arrive at random times
whereas SIMCMC methods allow us to make optimal use of what computing
power is available by adding as many particles as possible until the arrival of
a new observation. In such cases, a standard implementation would consist
of updating our approximation of πn (xn) at ‘time’ n by adding iteratively
particles to the approximations πn−L+1 (xn−L+1) , . . . , πn−1 (xn−1) , πn (xn)
for a lag L ≥ 1 until the arrival of data yn+1.
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SEQUENTIALLY INTERACTING MCMC 9

3. Convergence Results. We now present some convergence results
for SIMCMC. Despite the non-Markovian nature of SIMCMC, we are here
able to provide realistic verifiable assumptions ensuring the asymptotic con-
sistency of the algorithm. Our technique of proof relies on Poisson’s equation
[14]; similar tools have been used in [1] to study the convergence of adaptive
MCMC schemes and in [8] to study the stability of self-interacting Markov
chains.

Let us introduce B (En) = {fn : En → R such that ‖fn‖ ≤ 1} where ‖fn‖ =
sup

xn∈En

|fn (xn)|. We denote by E
x

(0)
1:n

[·] the expectation with respect to the

distribution of the simulated sequences initialized at x
(0)
1:n :=

(
x

(0)
1 ,x

(0)
2 , ...,x

(0)
n

)

and N0 = N∪{0}. For any measure µ and test function f , we write µ (f) =∫
µ (dx) f (x).
Our proofs relie on the following assumption.
Assumption A1. For any n ∈ T, there exists Bn < ∞ such that for any

xn ∈ Sn

(3.1) wn (xn) ≤ Bn.

This assumption is quite weak and can be easily checked in all the ex-
amples presented in Section 4. Note that a similar assumption also appears
when Lp bounds are established for SMC methods [6].

Our first result establishes the convergence of the empirical averages to-
wards the correct expectations at the standard Monte Carlo rate.

Theorem 3.1. Assume A1. For any n ∈ T and any p ≥ 1 there exist

C1,n, C2,p < ∞ such that for any x
(0)
1:n ∈ S1 × · · · × Sn, fn ∈ B (En) and

i ∈ N0

E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

≤
C1,nC2,p

(i + 1)
1
2

.

As a straightforward corollary, it follows from (2.6) that we also have the
following result.

Theorem 3.2. Assume A1. For any n ∈ T and any p ≥ 1 there exist

C1,n, C2,p < ∞ such that for any x
(0)
1:n ∈ S1 × · · · × Sn, fn ∈ B (En) and

i ∈ N0

E
x

(0)
1

[∣∣∣∣Ẑ1
(i)

− Z1

∣∣∣∣
p]1/p

≤
B1C1,1C2,p

i
1
2

,
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10 A. BROCKWELL ET AL.

and for n ∈ T\ {1}

E
x

(0)
1:n





∣∣∣∣∣∣

̂
(

Zn

Zn−1

)(i)

−
Zn

Zn−1

∣∣∣∣∣∣

p


1/p

≤
BnC1,nC2,p

i
1
2

.

By the Borel-Cantelli lemma, Theorem 3.1 and Theorem 3.2 also ensure
almost sure convergence of the empirical averages and of the normalizing
constant estimates.

Our final result establishes that each sequence
{
X

(i)
n

}
converges towards

πn.

Theorem 3.3. Assume A1. For any n ∈ T, x
(0)
1:n ∈ S1 × · · · × Sn and

fn ∈ B (En) we have

lim
i→∞

E
x

(0)
1:n

[
fn

(
X(i)

n

)]
= πn (fn) .

4. Applications. In this section, we will focus on the applications of
SIMCMC to non-linear non-Gaussian state-space models. Consider an un-
observed E−valued Markov process {Xn}n∈T

satisfying

X1 ∼ µ (·) , Xn| {Xn−1 = x} ∼ f (x, ·) .

We assume that we have access to observations {Yn}n∈T
which, conditionally

on {Xn}, are independent and distributed according to

(4.1) Yn| {Xn = x} ∼ g (x, ·) .

This family of models is important, because almost every stationary time
series model appearing in the literature can be cast into this form. Given
y1:P , we are often interested in computing the sequence of posterior distri-
butions {p (xn| y1:n)}n∈T

to perform goodness-of-fit and/or to compute the
marginal likelihood p (y1:P ). By defining the un-normalized distribution as

(4.2) γn (xn) = p (xn, y1:n) = µ (x1) g (x1, y1)
n∏

k=2

f (xk−1, xk) g (xk, yk)

(which is typically known pointwise), we have πn (xn) = p (xn| y1:n) and
Zn = p (y1:n) so that SIMCMC can be applied.

We will consider here three examples where the SIMCMC algorithms
are compared to their SMC counterparts. For a fixed number of itera-
tions/particles, SMC and SIMCMC have approximately the same computa-
tional complexity. The same proposals and the same number of samples were
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SEQUENTIALLY INTERACTING MCMC 11

thus used to allow for a fair comparison. Note that we chose not to use any
burn-in period for the SIMCMC and we initialize the algorithm by picking

x
(0)
n =

(
x

(0)
n−1, x

(0)
n

)
for any n where x

(0)
P is a sample from the prior. The

SMC algorithms were implemented using a stratified resampling procedure
[16]. The first two examples compare SMC to SIMCMC in terms of log-
likelihood estimates. The third example demonstrates the use of SIMCMC
in a real-time tracking application.

4.1. Linear Gaussian Model. We consider a linear Gaussian model where
E = Rd

Xn = AXn−1 + σvVn,(4.3)

Yn = Xn + σwWn

with X1 ∼ N (0,∆) , Vn
i.i.d.
∼ N (0,∆), Wn

i.i.d.
∼ N (0,∆), ∆ = diag (1, . . . , 1)

and A is a random (doubly stochastic) matrix. Here N (µ,Σ) is a Gaussian
distribution of mean µ and variance-covariance matrix Σ. For this model
we can compute the marginal likelihood ZP = p (y1:P ) exactly using the
Kalman filter. This allows us to compare our results to the ground truth.

We use two proposal densities: the prior density f (xn−1, xn) and the
optimal density (4.3) given by qopt

n (xn−1, xn) ∝ f (xn−1, xn) g (xn, yn) which
is a Gaussian. In both cases, it is easy to check that Assumption A1 is
satisfied.

For d = 2, 5, 10 we simulated a realization of P = 100 observations for
σv = 2 and σw = 0.5. In Table 1 and Table, we present the performance
of both SIMCMC and SMC for a varying d, a varying number of samples
and the two proposal distributions in terms on Root Mean Square Error
(RMSE) of the log-likelihood estimate

N 1000 2500 5000 10000 25000

SMC, d = 2 1.66 0.98 0.63 0.52 0.29

SIMCMC, d = 2 1.57 0.97 0.75 0.59 0.41

SMC, d = 5 4.84 4.76 3.06 2.18 1.59

SIMCMC, d = 5 5.57 5.41 4.12 2.36 1.83

SMC, d = 10 16.91 14.57 11.14 10.61 8.91

SIMCMC, d = 10 18.22 16.78 14.56 12.46 11.25

Table 1: RMSE for SMC and SIMCMC algorithms over 100 realizations for
prior proposal
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12 A. BROCKWELL ET AL.

N 1000 2500 5000 10000 25000

SMC, d = 2 0.33 0.17 0.09 0.06 0.04

SIMCMC, d = 2 0.37 0.19 0.14 0.11 0.06

SMC, d = 5 0.28 0.16 0.10 0.07 0.06

SIMCMC, d = 5 0.29 0.23 0.15 0.12 0.07

SMC, d = 10 0.18 0.14 0.09 0.05 0.07

SIMCMC, d = 10 0.31 0.20 0.16 0.12 0.10

Table 2: RMSE for SMC and SIMCMC algorithms over 100 realizations for
optimal proposal

As expected, the performance of our estimates is very significantly im-
proved when the optimal distribution is used as the observations are quite
informative. For a small number of samples N , the performance of SMC
is better than SIMCMC. This is not surprising as SIMCMC is an iterative
MCMC-type algorithm and no burn in was used. However SIMCMC display
performance a bit poorer than SMC.

4.2. A Nonlinear Non-Gaussian State-Space Model. We now consider a
nonlinear non-Gaussian state-space model introduced in [16] which has been
used in many SMC publications

Xn =
Xn−1

2
+

25Xn−1

1 + X2
n−1

+ 8cos (1.2n) + Vn,

Yn =
X2

n

20
+ Wn

where X1 ∼ N (0, 5) , Vn
i.i.d.
∼ N

(
0, σ2

v

)
and Wn

i.i.d.
∼ N

(
0, σ2

w

)
. As the

sign of the state Xn is not observed, the marginal posterior distributions
{p (xn| y1:n)} are often bimodal. SMC approximations are able to capture
properly the bimodality of the posteriors. This allows us to assess here
whether SIMCMC can also explore properly these multimodal distributions
by comparing SIMCMC to SMC results.

We use as a proposal density the prior density f (xn−1, xn). In this case,
it is easy to check that Assumption A1 is satisfied.

In Table 3, we present the performance of both SIMCMC and SMC for a
varying number of samples and a varying σ2

w whereas we set σ2
v = 5. This

model is more complex than the linear Gaussian model described earlier
as the posterior distributions we are sampling can be highly multimodal.
Both SMC and SIMCMC are performing better as the signal to noise ratio
degrades. This should not come as a surprise. As we are using the prior as a
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SEQUENTIALLY INTERACTING MCMC 13

proposal, it is preferable to have a diffuse likelihood for good performance.
In this multimodal scenario, SMC performs better than SIMCMC.

N 2500 5000 10000 25000 50000

SMC, σ2
w = 1 0.80 0.55 0.40 0.24 0.17

SIMCMC, σ2
w = 1 0.95 0.60 0.75 0.59 0.41

SMC, σ2
w = 2 0.33 0.23 0.17 0.11 0.07

SIMCMC, σ2
w = 2 0.91 0.70 0.50 0.38 0.29

SMC, σ2
w = 5 0.13 0.10 0.08 0.05 0.03

SIMCMC, σ2
w = 5 0.28 0.21 0.19 0.12 0.08

Table 3: Average RMSE of log-likelihood estimates for SMC and SIMCMC
algorithms over 100 realizations

4.3. Target Tracking. We consider here a target tracking problem [13],
[19]. The target is modelled using a standard constant velocity model

(4.4) Xn =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


Xn−1 + Vn

where Vn
i.i.d.
∼ N (0,Σ), with T = 1 and

Σ = 5




T 3/3 T 2/2 0 0
T 2/2 T 0 0
0 0 T 3/3 T 2/2
0 0 T 2/2 T


 .

The state vector Xn =
(

X1
n X2

n X3
n X4

n

)T
is such that X1

n (resp.

X3
n) corresponds to the horizontal (resp. vertical) position of the target

whereas X2
n (resp. X4

n) corresponds to the horizontal (resp. vertical) velocity.
In many real tracking applications, the observations are collected at random
times [11]. We have the following measurement equation

(4.5) Yn = tan−1

(
X3

n

X1
n

)
+ Wn

where Wn
i.i.d.
∼ N

(
0, 10−4

)
; these parameters are representative of real-world

tracking scenarios. We assume that we only observe Yn at the time indexes
n = 4k where k ∈ N and, when n 6= 4k, we observe Yn with probability
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14 A. BROCKWELL ET AL.

p = 0.25. We are here interested in estimating the associated sequence of
posterior distributions on-line.

Assume that the computational complexity of the SMC method is such
that only N = 1000 particles can be used in one unit of time. In such
scenarios, we can either use an SMC method using N particles to estimate
the sequence of posterior distributions of interest or an SMC method with
say N ′ = 4000 particles and chose to ignore observations that might appear
when n 6= 4k. These are the two standard approaches used in applications.
Alternatively, we can use the SIMCMC method to select adaptively the
number of particles as discussed in Subsection 2.4. If our SIMCMC algorithm
only adds particles to the approximation of the current posterior at time n,
it will use approximately mN particles to approximate this posterior if the
next observation only appears at time n + m.

We simulated 50 realizations of P = 100 observations according to the
model (4.4)-(4.5). In Table 4, we display the performance of SMC with
N particles, N ′ particles (but ignoring some observations) and SIMCMC
using an adaptive number of particles in terms of the average RMSE for the
conditional mean state estimate of Xn. In such scenarios SIMCMC methods
clearly outperforms SMC methods.

Algorithm SMC with N SMC with N ′ SIMCMC

Average RMSE 2.14 3.21 1.62
Table 4: Average RMSE for the Monte Carlo state estimate

5. Discussion. We have described an iterative algorithm based on in-
teracting non-Markovian sequences which is an alternative to SMC and have
established convergence results validating this methodology. The algorithm
is straightforward to implement for people already familiar with MCMC.
The main strength of SIMCMC compared to SMC is that it allows us to
iteratively improve our estimates in an MCMC-like fashion until a suitable
stopping criterion is met. This is useful as in numerous applications the
number of particles required to ensure the estimates are reasonably precise
is unknown. It is also useful in real-time applications when one is unsure of
exactly how much time will be available between successive arrivals of data
points.

As discussed in Subsection 2.4, numerous variants of SIMCMC can be
easily developed which have no SMC equivalent. The fact that such schemes
do not need to define a target distribution on an extended state-space ad-
mitting {πn}n∈T as marginals offers indeed a lot of flexibility. For example,
if we have access to multiple processors, it is possible to sample from each
πn independently using standard MCMC and perform several interactions
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SEQUENTIALLY INTERACTING MCMC 15

simultaneously; i.e. chains 1 and 2 could interact at the same time chains 3
and 4 interact. Adaptive versions of the algorithms can also be proposed by
monitoring the acceptance ratio of the MH steps. If the acceptance proba-
bility of the MH move between say πn−1 and πn is low, we could for example
increase the number of proposals at this time index.

From a theoretical point of view, there are a number of interesting ques-
tions to explore. Under additional stability assumptions on the Feynman-
Kac semigroup induced by {πn}n∈T and {qn}n∈T [6, chapter 4], we be-
lieve that it should be possible to obtain convergence results similar to [6,
chapter 7] in an SMC framework ensuring that, for functions of the form
fn (xn) = fn (xn), the bound C1,n in Theorem 3.1 is independent of n. We
also conjecture that assumption A1 is not only sufficient but necessary.

APPENDIX A: PROOFS OF CONVERGENCE

Our proofs relie on the Poisson equation [14] and are inspired by ideas de-
veloped in [1], [8]. However, contrary to standard adaptive MCMC schemes
[1] where, whatever being the value of the parameter being adapted, the
MCMC kernel has the target distribution as invariant distribution, we are
in a scenario akin to [8] where this condition is not satisfied. However, in
our context, it is still possible to establish much stronger results than in
[8] as we can characterize exactly the invariant distributions of some of the
Markov kernels appearing in the analysis; see Proposition 2.

A.1. Notation. We denote by P (En) the set of probability measures
on (En,Fn). We introduce the independent Metropolis-Hastings (MH) kernel
K1 : E1 ×F1 → [0, 1] defined by

K1
(
x1, dx

′
1

)
= α1

(
x1,x

′
1

)
q1
(
dx′

1

)
(A.1)

+

(
1 −

∫
α1 (x1,y1) q1 (dy1)

)
δx1

(
dx′

1

)
.

For n ∈ {2, ..., P}, we associate with any µn−1 ∈ P (En−1) the Markov kernel
Kn,µn−1

: En ×Fn → [0, 1] defined by

Kn,µn−1

(
xn, dx′

n

)
= αn

(
xn,x′

n

) (
µn−1 × qn

) (
dx′

n

)
(A.2)

+

(
1 −

∫
αn (xn,yn)

(
µn−1 × qn

)
(dyn)

)
δxn

(
dx′

n

)

where x′
n =

(
x′

n−1, x
′
n

)
. In (A.1) and (A.2), we have for n ∈ T

αn
(
xn,x′

n

)
= 1 ∧

wn (x′
n)

wn (xn)
.

imsart-aos ver. 2007/12/10 file: simcmc_revised.tex date: August 6, 2009



16 A. BROCKWELL ET AL.

We use ‖·‖
tv

to denote the total variation norm and for any Markov kernel

Ki (x, dx′
)

:=

∫
Ki−1 (x, dy) K

(
y, dx′

)
.

A.2. Preliminary Results. We establish here the expression of the
invariant distributions of the kernels K1 (x1, dx

′
1) and Kn,µn−1

(xn, dx′
n) and

establish that these kernels are geometrically ergodic. We also provide some
perturbation bounds for Kn,µn−1

(xn, dx′
n) and its invariant distribution.

Lemma 1. Assume A1. K1 (x1, dx
′
1) is uniformly geometrically ergodic

of invariant distribution π1 (dx1).

By construction, K1 (x1, dx
′
1) is an MH algorithm of invariant distribution

π1 (dx1). Uniform ergodicity follows from A1; see for example Theorem 2.1.
in [22].

Proposition 2. Assume A1. For any n ∈ {2, ..., P} and any µn−1 ∈
P (En−1), Kn,µn−1

(xn, dx′
n) is uniformly geometrically ergodic of invariant

distribution

(A.3) ωn

(
µn−1

)
(dxn) =

πn/n−1 (xn−1) .
(
µn−1 × πn

)
(dxn)

µn−1

(
πn/n−1

)

where πn (xn−1, dxn) and πn/n−1 (xn−1) are defined respectively in (2.8) and
(2.10).

Proof. To establish the result, it is sufficient to rewrite

wn (xn) =
Zn

Zn−1

πn(xn)
πn−1(xn−1)µn−1 (xn−1)
(
µn−1 × qn

)
(xn)

=
Zn

Zn−1

πn/n−1 (xn−1)
(
µn−1 × πn

)
(xn)

(
µn−1 × qn

)
(xn)

.

This shows that Kn,µn−1
(xn, dx′

n) is nothing but a standard MH algorithm
of proposal distribution

(
µn−1 × qn

)
(xn) and target distribution given by

(A.3). This distribution is always proper because A1 implies that
πn/n−1 (xn−1) < ∞ over En−1. Uniform ergodicity follows from Theorem
2.1. in [22].�

Corollary. It follows that for any n ∈ {2, ..., P} there exists ρn < 1 such
that for any m ∈ N0 and xn ∈ En

(A.4)
∥∥∥Km

n,µn−1
(xn, ·) − ωn

(
µn−1

)
(·)
∥∥∥

tv
≤ ρm

n .
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Proposition 3. Assume A1. For any n ∈ {2, ..., P}, we have for any
µn−1,νn−1 ∈ P (En−1), xn ∈ En and m ∈ N

(A.5)
∥∥∥Km

n,µn−1
(xn, ·) − Km

n,νn−1
(xn, ·)

∥∥∥
tv
≤

2

1 − ρn

∥∥µn−1 − νn−1

∥∥
tv

and

(A.6)
∥∥ωn

(
µn−1

)
− ωn (νn−1)

∥∥
tv
≤

2

1 − ρn

∥∥µn−1 − νn−1

∥∥
tv

.

Proof. For any fn ∈ B (En), we have the following decomposition

Km
n,µn−1

(fn) (xn) − Km
n,νn−1

(fn) (xn)

=
m−1∑

j=0

Kj
n,µn−1

(
Kn,µn−1

− Kn,νn−1

)
Km−j−1

n,νn−1
(fn) (xn)

=
m−1∑

j=0

Kj
n,µn−1

(
Kn,µn−1

− Kn,νn−1

) (
Km−j−1

n,νn−1
(fn) (xn) − ωn (νn−1) (fn)

)
.

From A1, we know that for any νn−1 ∈ P (En−1)

∥∥∥Km−j−1
n,νn−1

(xn, ·) − ωn (νn−1)
∥∥∥

tv
≤ ρm−j−1

n

and from (A.2) for any xn ∈ En and fn ∈ B (En)

Kn,µn−1
(fn) (xn) − Kn,νn−1 (fn) (xn)

=

∫
fn
(
x′

n

)
αn
(
xn,x′

n

) ((
µn−1 − νn−1

)
× qn

) (
dx′

n

)

+ fn (xn)

∫
αn
(
xn,y′

n

) ((
νn−1 − µn−1

)
× qn

) (
dy′

n

)

thus ∥∥∥Kn,µn−1
(xn, ·) − Kn,νn−1 (xn, ·)

∥∥∥
tv
≤ 2

∥∥µn−1 − νn−1

∥∥
tv

.

So

∥∥∥Kn,µn−1
(xn, ·) − Kn,νn−1 (xn, ·)

∥∥∥
tv
≤ 2

∥∥µn−1 − νn−1

∥∥
tv

m−1∑

j=0

ρm−j−1
n

= 2
1 − ρm

n

1 − ρn

∥∥µn−1 − νn−1

∥∥
tv

.

Hence (A.5) follows and we obtain (A.6) by taking the limit as m → ∞.�
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18 A. BROCKWELL ET AL.

A.3. Convergence of Averages. For any n ∈ {2, ..., P}, p ≥ 1 and
fn ∈ B (En) we want to study

E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

.

We have

(A.7) π̂(i)
n (fn) − πn (fn) = π̂(i)

n (fn) − S(i)
n (fn) + S(i)

n (fn) − πn (fn)

where

S(i)
n (fn) =

1

i + 1

i∑

m=0

ωn

(
π̂

(m)
n−1

)
(fn) .

To study the first term on the rhs of (A.7), we introduce the Poisson equation
[14]

fn (x) − ωn (µ) (fn) = f̂n,µ (x) − Kn,µ

(
f̂n,µ

)
(x)

whose solution, if Kn,µ is geometrically ergodic, is given by

(A.8) f̂n,µ (x) =
∑

i∈N0

[
Ki

n,µ (fn) (x) − ωn (µ) (fn)
]
.

We have

(i + 1)
[
π̂(i)

n (fn) − S(i)
n

]
= M (i+1)

n (fn)

(A.9)

+
i∑

m=0

[
f̂

n,π̂
(m+1)
n−1

(
X(m+1)

n

)
− f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)]

+ f̂
n,π̂

(0)
n−1

(
X(0)

n

)
− f̂

n,π̂
(i+1)
n−1

(
X(i+1)

n

)

where

(A.10) M (i)
n (fn) =

i−1∑

m=0

[
f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)
− K

π̂
(m)
n−1

(
f̂

n,π̂
(m)
n−1

)(
X(m)

n

)]

is a Gi
n-martingale with Gi

n = σ
(
X

(1:i)
1 ,X

(1:i)
2 , ...,X

(1:i)
n

)
where we define

X
(1:i)
k =

(
X

(1)
k , ...,X

(i)
k

)
.

We remind the reader that B (En) = {fn : En → R such that ‖fn‖ ≤ 1}
where ‖fn‖ = sup

xn∈En

|fn (xn)|. We establish the following propositions.
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Proposition 4. Assume A1. For any n ∈ {2, ..., P}, x
(0)
1:n, p ≥ 1, fn ∈

B (En) and m ∈ N0, we have

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(m)
n−1

(
X(m+1)

n

)∣∣∣∣
p]1/p

≤
1

1 − ρn

.

Proof. Assumption A1 ensures that f̂
n,π̂

(m)
n−1

is given by an expression of

the form (A.8). We have

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(m)
n−1

(
X(m+1)

n

)∣∣∣∣
p]1/p

≤
∑

i∈N0

E
x

(0)
1:n

[∣∣∣∣K
i

n,π̂
(m)
n−1

(fn)
(
X(m+1)

n

)
− ωn

(
π̂

(m)
n−1

)
(fn)

∣∣∣∣
p]1/p

≤
∑

i∈N0

E
x

(0)
1:n

[
E

x
(0)
1:n

(∣∣∣∣K
i

n,π̂
(m)
n−1

(fn)
(
X(m+1)

n

)
− ωn

(
π̂

(m)
n−1

)
(fn)

∣∣∣∣
p∣∣∣∣G

m
n−1

)]1/p

≤
∑

i∈N0

ρi
n =

1

1 − ρn

.

using Minkowski’s inequality and the fact that K
n,π̂

(m)
n−1

is an uniformly er-

godic Markov kernel conditional upon Gm
n−1 using A1.�

Proposition 5. Assume A1. For any n ∈ {2, ..., P} and any p ≥ 1,

there exist B1,n, B2,p < ∞ such that for any x
(0)
1:n, fn ∈ B (En) and m ∈ N

E
x

(0)
1:n

[∣∣∣M (m)
n (fn)

∣∣∣
p]1/p

≤ B1,nB2,p m
1
2 .

Proof. For p > 1 we use Burkholder’s inequality (e.g. [25, p. 499]); i.e.
there exist constants C1,n, C2,p < ∞ such that

E
x

(0)
1:n

[∣∣∣M (m)
n (fn)

∣∣∣
p]1/p

(A.11)

≤ C1,nC2,pE
x

(0)
1:n




(

m−1∑

i=0

[
f̂

n,π̂
(i)
n−1

(
X(i+1)

n

)
− K

n,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)]2)p/2



1/p

.

imsart-aos ver. 2007/12/10 file: simcmc_revised.tex date: August 6, 2009



20 A. BROCKWELL ET AL.

For p ∈ (1, 2), we can bound the lhs of (A.11)

E
x

(0)
1:n




(

m−1∑

i=0

[
f̂

n,π̂
(i)
n−1

(
X(i+1)

n

)
− K

n,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)]2)p/2



1/p

≤ E
x

(0)
1:n




(

2
m−1∑

i=0

[∣∣∣∣f̂n,π̂
(i)
n−1

(
X(i+1)

n

)∣∣∣∣
2

+

∣∣∣∣Kn,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
2
])p/2




1/p

≤ E
x

(0)
1:n

[(
2

m−1∑

i=0

[∣∣∣∣f̂n,π̂
(i)
n−1

(
X(i+1)

n

)∣∣∣∣
2

+

∣∣∣∣Kn,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
2
])]1/2

using (a − b)2 ≤ 2
(
a2 + b2

)
and Jensen’s inequality. Now using Jensen’s

inequality again, we have

E
x

(0)
1:n

[∣∣∣∣Kn,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
2
]
≤ E

x
(0)
1:n

[
K

n,π̂
(i)
n−1

(∣∣∣∣f̂n,π̂
(i)
n−1

∣∣∣∣
2
)(

X(i)
n

)]

and using Proposition 4, we obtain the bound

E
x

(0)
1:n




(

m−1∑

i=0

[
f̂

n,π̂
(i)
n−1

(
X(i+1)

n

)
− K

n,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)]2)p/2



1/p

≤
2

1 − ρn

m
1
2 .

For p ≥ 2, we we can bound the lhs of (A.11) through Minkowski’s in-
equality

E
x

(0)
1:n

[∣∣∣M (m)
n (fn)

∣∣∣
p]1/p

≤ C1,nC2,p

(
m−1∑

i=0

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(i)
n−1

(
X(i+1)

n

)
− K

n,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
p]2/p

)1/2

.

Using Minkowski’s inequality again

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(i)
n−1

(
X(i+1)

n

)
− K

n,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
p]

≤

(
E

x
(0)
1:n

[∣∣∣∣f̂n,π̂
(i)
n−1

(
X(i+1)

n

)∣∣∣∣
p]1/p

+ E
x

(0)
1:n

[∣∣∣∣Kn,π̂
(i)
n−1

(
f̂

n,π̂
(i)
n−1

)(
X(i)

n

)∣∣∣∣
p]1/p

)p

.

Now from Proposition 4 and Jensen’s inequality, we can conclude for p ≥ 1.
For p = 1, we use Davis’ inequality (e.g. [25, p. 499]) to obtain the result
using similar arguments which are not repeated here.�

imsart-aos ver. 2007/12/10 file: simcmc_revised.tex date: August 6, 2009



SEQUENTIALLY INTERACTING MCMC 21

Proposition 6. Assume A1. For any n ∈ {2, ..., P} and p ≥ 1 there

exists Bn < ∞ such that for any x
(0)
1:n, fn ∈ B (En) and m ∈ N0

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(m+1)
n−1

(
X(m+1)

n

)
− f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)∣∣∣∣
p]1/p

≤
Bn

m + 2

Proof. Our proof is based on the following key decomposition established
in Lemma 3.2. in [8]

f̂
n,π̂

(m+1)
n−1

(
X(m+1)

n

)
− f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)
+ ωn

(
π̂

(m+1)
n−1

)(
f̂

n,π̂
(m)
n−1

)(A.12)

=
∑

i,j∈N0

(
δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

))
Ki

n,π̂
(m+1)
n−1

(
K

n,π̂
(m+1)
n−1

− K
n,π̂

(m)
n−1

)

× Kj

n,π̂
(m)
n−1

(
fn − ωn

(
π̂

(m)
n−1

)
(fn)

)
.

We have

(A.13)
∣∣∣∣
(
δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

))
Ki

n,π̂
(m+1)
n−1

(
K

n,π̂
(m+1)
n−1

− K
n,π̂

(m)
n−1

)
Kj

n,π̂
(m)
n−1

(
fn − ωn

(
π̂

(m)
n−1

)
(fn)

)∣∣∣∣

=

∣∣∣∣
(
δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

))
Ki

n,π̂
(m+1)
n−1

(
K

n,π̂
(m+1)
n−1

− K
n,π̂

(m)
n−1

)
Kj

n,π̂
(m)
n−1

(fn)

∣∣∣∣

≤ ρj
n

∥∥∥∥
(
δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

))
Ki

n,π̂
(m+1)
n−1

(
K

n,π̂
(m+1)
n−1

− K
n,π̂

(m)
n−1

)∥∥∥∥
tv

≤ ρj
n ×

2

1 − ρn

∥∥∥π̂(m+1)
n−1 − π̂

(m)
n−1

∥∥∥
tv

∥∥∥∥
(
δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

))
Ki

n,π̂
(m+1)
n−1

∥∥∥∥
tv

≤ ρj
n ×

2

1 − ρn

∥∥∥π̂(m+1)
n−1 − π̂

(m)
n−1

∥∥∥
tv
× ρi

n

∥∥∥δ
X

(m+1)
n

− ωn

(
π̂

(m+1)
n−1

)∥∥∥
tv

≤
2ρi+j

n

1 − ρn

∥∥∥π̂(m+1)
n−1 − π̂

(m)
n−1

∥∥∥
tv

.

using A1, (A.5) in Proposition 3 and A1 again.
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Now we have

∣∣∣∣ωn

(
π̂

(m+1)
n−1

)(
f̂

n,π̂
(m)
n−1

)∣∣∣∣ =

∣∣∣∣∣∣
ωn

(
π̂

(m+1)
n−1

)



∑

i∈N0

[
Ki

n,π̂
(m)
n−1

(fn) − ωn

(
π̂

(m)
n−1

)
(fn)

]



∣∣∣∣∣∣

=
∑

i∈N0

∣∣∣∣
(
ωn

(
π̂

(m+1)
n−1

)
− ωn

(
π̂

(m)
n−1

))
Ki

n,π̂
(m)
n−1

(fn)

∣∣∣∣

≤
∑

i∈N0

ρi
n

∥∥∥ωn

(
π̂

(m+1)
n−1

)
− ωn

(
π̂

(m)
n−1

)∥∥∥
tv

≤
2

(1 − ρn)2

∥∥∥π̂(m+1)
n−1 − π̂

(m)
n−1

∥∥∥
tv

.(A.14)

using A1 and (A.6) in Proposition 3.
Now for any fn−1 ∈ B (En−1), we have

π̂
(m+1)
n−1 (fn−1) − π̂

(m)
n−1 (fn−1) =

fn−1

(
X

(m+1)
n−1

)

m + 2
−

π̂
(m)
n−1 (fn−1)

m + 2
.

thus

(A.15)
∥∥∥π̂(m+1)

n−1 − π̂
(m)
n−1

∥∥∥
tv
≤

2

m + 2
.

The result follows now directly combining (A.12), (A.13), (A.14), (A.15) and
using Minkowski’s inequality.�

Proposition 7. Assume A1. For any n ∈ {2, ..., P} and any p ≥ 1

there exists B1,n, B2,p < ∞ such that for x
(0)
1:n, fn ∈ B (En) and i ∈ N0

E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − S(i)

n (fn)
∣∣∣
p]1/p

≤
B1,nB2,p

(i + 1)
1
2

Proof. Using (A.9) and Minkowski’s inequality, we obtain

E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − S(i)

n (fn)
∣∣∣
p]1/p

(A.16)

≤
1

(i + 1)
E

x
(0)
1:n

[∣∣∣M (i+1)
n (fn)

∣∣∣
p]1/p

+
1

(i + 1)

i∑

m=0

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(m+1)
n−1

(
X(m+1)

n

)
− f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)∣∣∣∣
p]1/p

+
1

i + 1
E

x
(0)
1:n

[∣∣∣∣f̂n,π̂
(0)
n−1

(
X(0)

n

)∣∣∣∣
p
]1/p

+
1

i + 1
E

x
(0)
1:n

[∣∣∣∣f̂n,π̂
(i+1)
n−1

(
X(i+1)

n

)∣∣∣∣
p
]1/p

.
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The first term on the rhs of (A.16) is bounded using Proposition 5, the term
on the last line of the rhs are going to zero because of Proposition 4. For
the second term, we obtain using Proposition 6

i∑

m=0

E
x

(0)
1:n

[∣∣∣∣f̂n,π̂
(m+1)
n−1

(
X(m+1)

n

)
− f̂

n,π̂
(m)
n−1

(
X(m+1)

n

)∣∣∣∣
p]1/p

≤
i∑

m=0

Bn

m + 2

≤ Bn log (i + 2)

The result follows.�
Proof of Theorem 3.1. Under A1, the result is clearly true for n = 1

thanks to Lemma 1. Assume it is true for n − 1 and let us prove it for n.
We have using Minkowski’s inequality

E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

≤ E
x

(0)
1:n

[∣∣∣π̂(i)
n (fn) − S(i)

n (fn)
∣∣∣
p]1/p

+ E
x

(0)
1:n

[∣∣∣S(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

.

The first term on the rhs can be bounded using Proposition 7. For the second
term, we have

E
x

(0)
1:n

[∣∣∣S(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

≤
1

(i + 1)

i∑

m=0

E
x

(0)
1:n

[∣∣∣ωn

(
π̂

(m)
n−1

)
(fn) − ωn (πn−1) (fn)

∣∣∣
p]1/p

.

Using (A.3), we obtain

ωn (πn−1) (fn) − ωn

(
π̂

(m)
n−1

)
(fn)

=
(πn−1 × πn)

(
πn/n−1.fn

)

πn−1

(
πn/n−1

) −

(
π̂

(m)
n−1 × πn

)(
πn/n−1.fn

)

π̂
(m)
n−1

(
πn/n−1

)

=

((
πn−1 − π̂

(m)
n−1

)
× πn

)(
πn/n−1.fn

)
.π̂

(m)
n−1

(
πn/n−1

)

π̂
(m)
n−1

(
πn/n−1

)
.πn−1

(
πn/n−1

)

+

(
π̂

(m)
n−1 × πn

) (
πn/n−1.fn

)
.
(
π̂

(m)
n−1 − πn−1

)(
πn/n−1

)

π̂
(m)
n−1

(
πn/n−1

)
.πn−1

(
πn/n−1

)
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so, as πn−1

(
πn/n−1

)
= 1, we have

∣∣∣ωn (πn−1) (fn) − ωn

(
π̂

(m)
n−1

)
(fn)

∣∣∣

≤
∣∣∣
((

πn−1 − π̂
(m)
n−1

)
× πn

) (
πn/n−1.fn

)∣∣∣

+

∣∣∣
(
π̂

(m)
n−1 × πn

) (
πn/n−1.fn

)
.
(
π̂

(m)
n−1 − πn−1

) (
πn/n−1

)∣∣∣

π̂
(m)
n−1

(
πn/n−1

) .

Assumption A1 implies that there exists Dn < ∞ such that
πn/n−1 (xn−1) < Dn over En−1. Thus we have using the induction hypothesis

E
x

(0)
1:n

[∣∣∣ωn

(
π̂

(m)
n−1

)
(fn) − ωn (πn−1) (fn)

∣∣∣
p]1/p

≤ 2DnE
x

(0)
1:n

[∣∣∣∣π̂
(m)
n−1

(
πn/n−1

Dn

)
− πn−1

(
πn/n−1

Dn

)∣∣∣∣
p]1/p

≤
2DnC1,n−1C2,p

(m + 1)1/2

and

E
x

(0)
1:n

[∣∣∣S(i)
n (fn) − πn (fn)

∣∣∣
p]1/p

≤
2DnC1,n−1C2,p

(i + 1)

i∑

m=0

1

(m + 1)1/2
≤

DnC1,n−1C2,p

(i + 1)1/2
.

This concludes the proof.�

A.4. Convergence of Marginals. Proof of Theorem 3.3. For n = 1
the result follows directly from Assumption A1. Now consider the case where
n ≥ 2. We use the following decomposition for 0 ≤ n (i) ≤ i

∣∣∣∣Ex
(0)
1:n

[
fn

(
X(i)

n

)
− πn (fn)

]∣∣∣∣ ≤
∣∣∣∣Ex

(0)
1:n

[
fn

(
X(i)

n

)
− K

n(i)

n,π̂
(i−n(i))
n−1

fn

(
X(i−n(i))

n

)]∣∣∣∣

+

∣∣∣∣Ex
(0)
1:n

[
K

n(i)

n,π̂
(i−n(i))
n−1

(fn)
(
X(i−n(i))

n

)
− ωn

(
π̂

(i−n(i))
n−1

)
(fn)

]∣∣∣∣

+

∣∣∣∣Ex
(0)
1:n

[
ωn

(
π̂

(i−n(i))
n−1

)
(fn) − ωn (πn−1) (fn)

]∣∣∣∣

Assumption A1 implies that

∣∣∣∣Ex
(0)
1:n

[
K

n(i)

n,π̂
(i−n(i))
n−1

(fn)
(
X(i−n(i))

n

)
− ωn

(
π̂

(i−n(i))
n−1

)
(fn)

]∣∣∣∣ ≤ ρn(i)
n .
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For the first term, we use the following decomposition

E
x

(0)
1:n

[
fn

(
X(i)

n

)
− K

n(i)

n,π̂
(i−n(i))
n−1

(fn)
(
X(i−n(i))

n

)]

=

n(i)∑

j=2

E
x

(0)
1:n

[
Kj−1

n,π̂
(i−j+1)
n−1

(fn)
(
X(i−j+1)

n

)
− Kj

n,π̂
(i−j)
n−1

(fn)
(
X(i−j)

n

)]

and

E
x

(0)
1:n

[
Kj−1

n,π̂
(i−j+1)
n−1

(fn)
(
X(i−j+1)

n

)
− Kj

n,π̂
(i−j)
n−1

(fn)
(
X(i−j)

n

)]

= E
x

(0)
1:n

[
E

x
(0)
1:n

[
Kj−1

n,π̂
(i−j+1)
n−1

(fn)
(
X(i−j+1)

n

)
− Kj−1

n,π̂
(i−j)
n−1

(fn)
(
X(i−j+1)

n

)∣∣∣∣G
i−j
n

]]

where

Kj−1

n,π̂
(i−j+1)
n−1

(fn)
(
X(i−j+1)

n

)
− Kj−1

n,π̂
(i−j)
n−1

(fn)
(
X(i−j+1)

n

)

=
j−2∑

m=0

Km

n,π̂
(i−j+1)
n−1

(
K

n,π̂
(i−j+1)
n−1

− K
n,π̂

(i−j)
n−1

)
Kj−1−m−1

n,π̂
(i−j)
n−1

(fn)
(
X(i−j+1)

n

)

=
j−2∑

m=0

Km

n,π̂
(i−j+1)
n−1

(
K

n,π̂
(i−j+1)
n−1

− K
n,π̂

(i−j)
n−1

)

×

(
Kj−1−m−1

n,π̂
(i−j)
n−1

(fn)
(
X(i−j+1)

n

)
− ωn

(
π̂

(i−j)
n−1

)
(fn)

)
.

Now we have from Proposition 3 that

∥∥∥∥K
m

n,π̂
(i−j+1)
n−1

(xn, ·) − Km

n,π̂
(i−j)
n−1

(xn, ·)

∥∥∥∥
tv

≤
2

(1 − ρn)

∥∥∥π̂(i−j+1)
n−1 − π̂

(i−j)
n−1

∥∥∥
tv

≤
2

(1 − ρn)

1

i − j + 2
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and using A1
∣∣∣∣Ex

(0)
1:n

[
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x
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[
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n
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n
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n
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≤
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E
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
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
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)

×
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(
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n

)
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(i−j)
n−1

)
(fn)

)∣∣∣∣G
i−j
n
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≤
2

(1 − ρn) (i − j + 2)
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ρj−m−2
n

=
2
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n
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and
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(0)
1:n

[
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(
X(i)

n

)
− K

n(i)

n,π̂
(i−n(i))
n−1

(fn)
(
X(i−n(i))

n

)]∣∣∣∣

≤
2

(1 − ρn)2

n(i)∑

j=2

1

(i − j + 2)

≤
2

(1 − ρn)2
log

(
i

i − n (i) + 1

)
.

Finally to study the last term E

[
ωn

(
π̂

(i−n(i))
n−1

)
(fn) − ωn (πn−1) (fn)

]
, we

use the same decomposition used in the proof of Theorem 3.1 to obtain
∣∣∣E
[
ωn

(
π̂

(i−n(i))
n−1

)
(fn) − ωn (πn−1) (fn)

]∣∣∣

≤ 2DnE
x

(0)
1:n

[∣∣∣∣π̂
(i−n(i))
n−1

(
πn/n−1

Dn

)
− πn−1

(
πn/n−1

Dn

)∣∣∣∣
]

≤
2DnC1,n−1

(i − n (i) + 1)1/2
.

One can check that

∣∣∣∣Ex
(0)
1:n

[
fn

(
X

(i)
n

)
− πn (fn)

]∣∣∣∣ converges towards zero for

n (i) = ⌊iα⌋ where 0 < α < 1.�
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