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Abstract— This work investigates the continuous-state counterpart
of the discrete randomized shortest-path framework (RSP, [23]) on
a graph. Given a weighted directed graph G, the RSP considers
the policy that minimizes the expected cost (exploitation) to reach a
destination node from a source node, while maintaining a constant
relative entropy spread in the graph (exploration). This results in a
Boltzmann probability distribution on the (usually infinite) set of paths
connecting the source node and the destination node, depending on
an inverse temperature parameter θ. This framework defines a biased
random walk on the graph that gradually favors low-cost paths as θ
increases. It is shown that the continuous-state counterpart requires
the solution of two partial differential equations – providing forward
and backward variables – from which all the quantities of interest
can be computed. For instance, the best local move is obtained by
taking the gradient of the logarithm of one of these solutions, namely
the backward variable. These partial differential equations are the so-
called steady-state Bloch equations to which the Feynman-Kac formula
provides a path integral solution. The RSP framework is therefore
a discrete-state equivalent of the continuous Feynman-Kac diffusion
process involving the Wiener measure. Finally, it is shown that the
continuous-time continuous-state optimal randomized policy is obtained
by solving a diffusion equation with an external drift provided by the
gradient of the logarithm of the backward variable, playing the role of
a potential.

I. INTRODUCTION

Minimum-cost problems on a graph are of capital importance in a
variety of problems, from robot path planning, to maze solving. Path
planning [16] is a well-known problem in the robotics community,
described by [26] as “checking the consequences of an action
in an internal model before performing such actions”. Originally,
single-source single-destination problems were tackled, but when
encountering multiple sources or destinations, more sophisticated
approaches are needed (see, e.g., [18]).

The Randomized Shortest Paths (RSP) approach is a discrete
method that tackles the problem of finding the minimum-cost
path on a graph while keeping a constant level of spread entropy
[23]. The introduced path randomization allows balancing the load
(number of packages) per path in the case of multiple goals, while
exploiting those goals in parallel. The RSP framework was inspired
by the work of Akamatsu [1], who proposed a randomized policy
for routing traffic in transportation networks, penalizing long paths.
Similarly, the RSP assigns a probability distribution to the set of
admissible paths. This distribution, though peaked around optimal
paths, let the random walker take a random transition according to
the (Shannon) entropy spread in the graph. In this way, we consider
the entropy as a parameter controlling the trade-off between the
exploration and the exploitation of the graph (when the entropy is
zero, there is no uncertainty, and therefore no exploration).

In this paper, the continuous-state counterpart of the discrete
RSP is investigated and applied to path planning. By defining a
grid where each node has four neighbors (north, south, east, west)
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situated at a distance ε, and taking the limit ε→ 0, a system of two
independent partial differential equations computing forward and
backward variables is obtained (Laplacian-based diffusion equations
where the initial nodes are considered as sources and the destination
nodes as sinks, and vice-versa). Once these variables are known, all
the quantities of interest – such as the optimal randomized policy
– can be easily computed.

The use of physical analogies in path planning methods is not
new, though. Wave propagation methods [6], [21] represent the
first of the three main kinds of physical analogy in optimal path
planning. In [21], the authors introduce an analogue method for
labyrinth solving based on parallel wave propagation through all
possible paths in a reaction-diffusion media. Potential field methods
[5], [11], [15] are the second popular technique borrowed from
physics. The method in [15] proposes a real-time path planner
based on an artificial potential field where the goal is represented
as an attractive pole and the obstacles as repulsive faces. Similarly,
the work from [5] proposes a smoothed version with two major
advantages, i.e., it is based on a Laplace equation (which avoids
local minima), and it benefits from the use of massively parallel
architectures to solve this equation (efficient computation).

Eventually, diffusion strategies [6], [17], [18], [25], [24], [26],
[27] appeared as the third type of widely studied physical analogy
in many path planning algorithms. A reaction-diffusion mechanism
is presented in [26] in order to complete the behavior of a multi-
agent model based on analogical representations. The propagation
of an agent’s information through his network of neighbors leads
to the computation of a gradient field that will guide a robot on an
obstacle grid. The DIP (Diffusion in Potential Fields) method [6]
computes a gradient field on a grid where each cell has an activation
function which is computed by diffusion in a similar fashion to
an automata’s activation function. Laplace’s equation is also used
in diffusion strategies, e.g., the work in [25], [24] introduces the
theoretical basis for a dynamic path planning approach using an
unsteady diffusion equation with Dirichlet boundary conditions.
This method enjoys the nice properties of Laplacian methods (high-
speed, high efficiency), but also adapts to changing environments.
A similar approach based on a fluid model represented by a Poisson
equation with Newmann boundary conditions is presented by [17].
Analogue systems have also adopted this strategy, as for instance
the method from [27], which represents obstacles as non-conducting
solids in a conducting medium. More sophisticated methods, such as
[18], cope with uneven natural terrain path planning. In this case,
a viscous fluid formalism where external forces and friction are
taken into account is used for multiple-source multiple-destination
problems.

The continuous-state RSP version presented here belongs to
the diffusion methods involving Laplacian differential operators
with Dirichlet boundary conditions for multiple-source multiple-
destination problems. Its most interesting properties are the fact
that (1) it depends on a diffusion parameter controlling the trade-
off between exploration and exploitation, (2) the resulting policy
is optimal since it ensures minimal expected cost for a constant



exploration, (3) it provides the minimum-cost policy when the
diffusion parameter is low, and (4) it shows some interesting
links between biased random walks on a graph (discrete RSP)
and continuous-state Feynman-Kac diffusion processes. Its main
drawback is that paths are considered as independent.

Section II introduces the RSP framework and the computation of
its main quantities of interest. The continuous-state RSP extension
is developed in Section III. Further details as well as as a physical
interpretation and boundary conditions are here specified. The dy-
namic continuous-time continuous-state optimal policy is developed
in Section IV. Two practical, simulation example, cases involving
path planning are presented in Section V. Section VI discusses the
obtained conclusions and possible extensions.

II. THE DISCRETE RSP FRAMEWORK

This section provides a short account of the discrete randomized
shortest path (RSP) framework [23], [29], in the context of a single-
source single-destination problem, which was initially inspired by
a stochastic traffic assignment model [1]. It will be shown that this
RSP framework allows solving minimal-cost problems in a graph
by means of simple linear algebra operations.

A. RSP: background and notations

Let G be a weighted directed graph containing n nodes, together
with a source, or initial, node (node 1) and a destination, or goal,
node (node n), with n 6= 1 (we assume that source and destination
nodes are different). Multiple-source (-destination) problems are
tackled by adding a new, dummy, source (destination) node con-
nected through a directed link to all the original source (destination)
nodes with a zero associated cost. Let us also assume that node
n can be reached from the source node, and a positive cost ckk′
is associated to each arc k → k′. We consider graphs with no
self-loops, which implies that the cost of remaining in the same
state is infinite, ckk = ∞ for all k. Similarly, an infinite cost is
assumed when there is no arc between node k and k′. The cost
matrix containing ckk′ will be referred to as C. We now adopt a
sum-over-paths formalism [19]: let us further denote by P the
set of all paths {℘} (including cycles) joining the source node 1
and the destination node n. Let the initial, reference, policy be
uniform (pure exploration – the costs are not taken into account),
p

(0)

kk′ = 1/nk, where nk is the outdegree of node k. Let us now
seek the optimal probability distribution P∗(℘) on the set of paths
P – assumed to be independent – minimizing the expected cost for
reaching the destination node from the source node (exploitation)
while maintaining a constant relative entropy J0 with respect to this
reference policy (exploration). The problem to solve is

minimize
P(℘)

X
℘∈P

P(℘)C(℘)

subject to
P
℘∈P P(℘) ln(P(℘)/P(0)(℘)) = J0

(1)

where C(℘) is the sum of the local costs ckk′ along path ℘ and
P(℘) is the probability of following ℘. Moreover, P(0)(℘) is the
probability of following path ℘ when using the reference policy,
i.e., transition probabilities p(0)

kk′ . The sum in (1) is defined on all
paths ℘ ∈ P . It can be easily shown [19] that the optimal path
probability distribution is a Boltzmann distribution on the set of
paths P ,

P∗(℘) =
P(0)(℘) exp [−θC(℘)]X

℘′∈P

P(0)(℘′) exp [−θC(℘′)]
(2)

where θ > 0 is the inverse temperature and is directly related
to the relative entropy J0. This equation provides the optimal
randomized policy expressed in terms of path probabilities. As
expected, shorter paths ℘, having small C(℘), will be favored.
Indeed, when θ is large, the probability distribution defined by
Equation (2) is biased towards short (low cost) paths, i.e., when
θ →∞, the probability distribution peaks around the shortest paths.
Let us further define the partition function as

Z =
X
℘∈P

P(0)(℘) exp [−θC(℘)] (3)

Clearly, the expected number of passages η(k, k′) through arc
k → k′, and the expected number of passages per node n(k′) are
given by ([13], but see [8] for an alternative derivation in the sum-
over-paths context)

η(k, k′) = −1

θ

∂(lnZ)

∂ckk′
(4) n(k′) =

X
k∈P (k′)

η(k, k′) (5)

where P (k′) is the set of predecessors of node k′ and k′ 6= 1.
For the single-source single-destination problem with indepen-

dent paths, the optimal policy expressed in terms of path prob-
abilities in Equation (2), providing the minimum-cost policy for
a constant J0, can be re-expressed in terms of local, optimal,
transition probabilities, i.e., a local first-order Markov policy (see
[23])

p∗kk′ =
η(k, k′)X

l∈S(k)

η(k, l)
, for k 6= n (6)

which provides the transition probabilities from every node of
interest of the graph. Here, S(k) is the set of successors of node
k. Other useful measures, such as the expected cost, can also be
calculated through the partition function [13]

C = −1

θ

∂(lnZ)

∂θ
(7)

Let us now show how this partition function, Z , can be computed
from the cost matrix and the reference transition probabilities.

B. Computation of the partition function

It is shown in [23], [19] that the partition function Z can be
computed from the immediate cost matrix, C, and the reference
transition matrix, P(0), containing the p(0)

kk′ . We first define W as

W = P(0) ◦ exp[−θC] = exp[−θC + ln P(0)] (8)

where the logarithm/exponential functions are taken element-wise
(◦ is the Hadamard matrix product). Further developments [23]
show that the partition function (Equation (3)) can be computed
as

Z = [(I−W)−1 − I]1n = [Z− I]1n = [Z]1n = z1n (9)

and by analogy with Markov chains, Z = (I−W)−1 = I + W +
W2 + . . . , will be called the fundamental matrix. Its elements
(k, l) are denoted as zkl.

C. Computation of the main quantities

Our next step aims at computing the expected number of passages
through arc k → k′. The partial derivative from Equation (4) can
be readily computed [23], [19] as

η(k, k′) =
z1kwkk′zk′n

z1n
(10)



where wkk′ is element (k, k′) of matrix W. From Equation (5),
the expected number of visits is given by

n(k′) =
z1k′zk′n
z1n

, for k′ 6= 1 (11)

where we used the identity z1k′ = δ1k′ +
P
k∈P (k′) z1kwkk′

that can easily be deduced from Z = I + WZ. Moreover, from
Equations (6) and (10), the optimal transition probabilities are

p∗kk′ =
wkk′zk′nX

l∈S(k)

wklzln
=
wkk′zk′n
zkn

, for k 6= n (12)

where we used zkn = δkn +
P
l∈S(k) wklzln. When θ → ∞, the

p∗kk′ encode the minimum-cost policy, while for intermediate values
of θ, following Equation (1), they define a Markov chain minimizing
the expected cost to the destination for a given relative entropy
spread in the graph. It can be observed that these optimal transition
probabilities (the optimal policy) do not depend on the initial,
source, node (node 1) – they only depend on the destination node
n. Equation (12) therefore defines the optimal randomized policy
from any source node – it is actually the local policy counterpart
of Equation (2) when paths are considered as independent [23].

Therefore, the one-step ahead probability distribution of finding
the random walker in state k′ at time step t+1 when following the
optimal policy (12), ρ∗t+1(k′), given that its distribution was ρ∗t (k)
at time t is

ρ∗t+1(k′) =

nX
k=1

p∗kk′ρ
∗
t (k) =

nX
k=1

wkk′zk′n
(zkn − δkn)

ρ∗t (k) (13)

Let us now come back to the computation of the elements of
the fundamental matrix, zkl. Since the Equations (10-12) only
involve the first row and the last column of matrix Z, they can
be easily computed by solving two systems of linear equations.
For the last column, we solve (I −W)zb = en, where zb is
the column vector of so-called backward variables ([zb]k = zkn).
Symmetrically, the column vector of forward variables, zf (with
[zf ]k = z1k), containing the first row of matrix Z, is provided
by (I −W)Tzf = e1. Thus, zfk = z1k and zbk = zkn. Written
element-wise, this reads8>><>>:

zf1 = 1 +
X

k∈P (1)

p
(0)
k1 exp[−θck1] zfk

zfk′ =
X

k∈P (k′)

p
(0)

kk′ exp[−θckk′ ] zfk , for k′ 6= 1
(14)

and for the backward variables,8>><>>:
zbn = 1 +

X
k′∈S(n)

p
(0)

nk′ exp[−θcnk′ ] zbk′

zbk =
X

k′∈S(k)

p
(0)

kk′ exp[−θckk′ ] zbk′ , for k 6= n
(15)

Now, these backward variables zbk = zkn given by Equation (15)
have an interesting, intuitive, interpretation [19]. Consider a new
random walk defined by the transition probabilities (with a tilde)

epkk′ = p
(0)

kk′ exp [−θckk′ ] (16)

without any normalization. Since θ > 0, the transition matrix eP,
containing the epkk′ , is sub-stochastic. This means that, at each time
step of the random walk, the random walker has a non-zero proba-
bility of abandoning the walk equal to epeva,k = (1−

P
k′∈S(k) epkk′).

We will say that Equation (16) defines an evaporating random
walk (ERW) since the probability of seeing the random walker

pursuing its quest decreases at each time step. In that case, the
backward variable zbk from Equation (15) can be interpreted as the
average number of visits to the goal state n before evaporation
during the ERW, when starting from an intermediate state k at
t = 0 [14], [28]. The quantity ln zbk will act as a potential (see
Equation (53)).

In the same manner, one can show that the expected cost from
Equation (7), when starting from the source node and following the
optimal policy, is provided by

C =

nX
k=1

X
k′∈S(k)

ckk′nkk′ =
1

z1n

nX
k=1

X
k′∈S(k)

z1kckk′wkk′zk′n

(17)
where ∞. exp[−∞] = 0 by convention. Let us now take the
continuous state-space limit to the RSP.

III. THE CONTINUOUS STATE-SPACE EQUIVALENT TO RSP

The main objective of this paper is to investigate how the discrete
RSP can be adapted to a continuous-state domain. In order to
answer this question, let us consider a two-dimensional undirected
lattice, with ckk′ = ck′k, on which we apply the RSP framework.
Each node has four neighbors as displayed in Figure (1). The idea
will be to let the grid become dense by taking the limit ε→ 0. The
first step is to study the behavior of the forward/backward variables
when taking this limit.

!

zi , j zi+1 , jzi-1 , j

zi , j-1

zi , j+1

Fig. 1. Forward/backward variable in a grid configuration with 4 neighbors.

Let us recall that forward/backward variables are provided
by Equations (14–15). Choosing uniform reference probabilities,
p

(0)

kk′ = 1/4 for all k, this reads8>>><>>>:
zf1 = 1 +

X
k∈N(1)

1

4
exp[−θck1] zfk

zfk′ =
X

k∈N(k′)

1

4
exp[−θckk′ ] zfk , for k′ 6= 1

(18)

where N(k) is the set of neighbors of node k. Equations for the
backward variables are obtained in the same way.

A. Computation of the forward/backward variables

We first consider the forward equation, Equation (18), and
assume that each node on the grid is separated from its neighbors by
a distance ε > 0 (see Figure (1)). The forward variable zfk will be
indexed by its position (xk, yk) and written as zf (xk, yk). In that
case, the total cost along the path r(s) = (x(s), y(s)) connecting
node k to node k′ is

ckk′ =

Z (xk′ ,yk′ )

(xk,yk)

V (x(s), y(s))ds (19)

where V (x, y) ≥ 0 is the cost density at (x, y) and s is the total
displacement along the trajectory (its length). Note that, for the



sake of readability, we will also denote V (x, y) – as well as the
other variables – as Vx,y or V (r). In other words, it is assumed
that the cost is only related to the position of the walker and not
his direction – we therefore consider, for simplicity, that the cost
ckk′ is no more associated to the transition k → k′, but only to the
state k, ckk′ = ck. Taking directions into account would require
the use of tensors, which is not investigated in the present work.

As for any continuous-state stochastic process [3], [4], [9], [10],
[12], [22], let us now assume that ε → 0 while maintaining the
ratio ε2/δs = c constant and finite, which means that in order
to achieve a net displacement of ε, the random walker needs to
make a total travel length of the order δs ∝ ε2. This implies that
the total length of the path followed by the random walker is of
considerably larger magnitude than the final net displacement, ε
[3]. When ε → 0, ckk′ ' V (xk, yk)δs and Equation (18) can be
rewritten for the grid of Figure (1) as

zfx,y =
exp[−θVx,yδs]

4
zfx+ε,y+

exp[−θVx,yδs]
4

zfx−ε,y

+
exp[−θVx,yδs]

4
zfx,y+ε+

exp[−θVx,yδs]
4

zfx,y−ε

=
exp[−θVx,yδs]

4
[zfx+ε,y+zfx−ε,y + zfx,y+ε + zfx,y−ε] (20)

Expanding each term up to the second order of ε, e.g.,

zfx−ε,y = zfx,y −
∂zfx,y
∂y

ε+
1

2

∂2zfx,y
∂y2

ε2 + o(ε3) (21)

provides

zfx,y =
e−[θVx,yδs]

4
(4 zfx,y +

∂2zfx,y
∂x2

ε2 +
∂2zfx,y
∂y2

ε2 + o(ε3)) (22)

Keeping in mind that δs = ε2/c and further expanding
e−[θVx,yδs] = (1− θ

c
Vx,yε

2) + o(ε3), we obtain

zfx,y =
1

4
(1− θ

c
Vx,yε

2 + o(ε3))

×

 
4 zfx,y +

∂2zfx,y
∂x2

ε2 +
∂2zfx,y
∂y2

ε2 + o(ε3)

!
(23)

Without loss of generality, the constant c can be absorbed by θ:
we now choose the units of θ in such a way that c = 1. Then, by
defining the diffusion constant as D = 1/(4θ) and keeping only
the terms in ε2,

∂2zfx,y
∂x2

+
∂2zfx,y
∂y2

=
1

D
Vx,yz

f
x,y , or D∆zfx,y = Vx,y z

f
x,y (24)

This is exactly the stationary solution of a Schrodinger-like
diffusion equation without the imaginary term:

µ
∂zf (r, t)

∂t
= D∆zf (r, t)− V (r)zf (r, t) (25)

where V (r) plays the role of a potential and r(τ) = (x(τ), y(τ)).
Equation (25) is also sometimes called the Bloch equation [4] in
physics. It corresponds to a simple diffusion process for which the
particle can disappear with a probability density V (r) per unit of
time at position r, up to a normalization factor.

1) A diffusion process interpretation: There exists, indeed, an
intuition related to general diffusion processes behind this equation
[3], [4], [10]. The well-known first Fick’s law states that particle
flow, j, of a diffusing material in any part of the system is
proportional to the local density of particle gradient (e.g., [3], [4],
[10]). In other words,

j(r, t) = −D∇ρt(r) (26)

where ρt(r) is the particle density at time t and position r = (x, y),
D is the diffusion constant, and j denotes the particle flow, i.e., j·n,
with ||n|| = 1, is the net number of diffusing particles per unit of
time passing through position r in the direction of n. Furthermore,
if particles are neither created nor destroyed, the basic continuity
relations [4], [10], [22] in two dimensions are verified (see [2] for
standard notations)

∂

∂t

ZZ
Ω

ρt(r) dxdy = −
I
∂Ω

j(r, t) · dσ (27)

where ∂Ω is the region boundary and dσ is the infinitesimal contour
vector directed to the outside of ∂Ω. Or, equivalently, from the
divergence theorem,

∂ρt(r)

∂t
= −div j(r, t) (28)

Combining Fick’s law with the continuity Equation (28) yields

∂ρt(r)

∂t
= D∆ρt(r) (29)

Assume now that, instead of Equation (28), the density of
particles is governed by

∂ρt(r)

∂t
= −div j(r, t)− V (r)ρt(r) (30)

which considers that particles are disappearing with a density
V (r) per unit of time [4]. This mimics the “evaporating” random
walk behavior of the discrete RSP described in Section II-C. The
resulting equation is

∂ρt(r)

∂t
= D∆ρt(r)− V (r)ρt(r) (31)

which is exactly Equation (25). In addition, when an external force
f is present – implying a drift (velocity) in the direction of f – this
results in an additional flow of the form

jf (r, t) = −γρt(r) f (32)

with γ being a mobility coefficient, the inverse of the friction
coefficient [3], [4]. The flow j of Equation (26) therefore becomes
j(r, t) = −D∇ρt(r)− γρt(r) f , yielding

∂ρt(r)

∂t
= D∆ρt(r)− γ div(ρt(r) f)− V (r)ρt(r) (33)

instead of (31). This equation will be encountered later, when the
optimal policy is derived (see Equation (53)). Interestingly, it can
be shown that the solution to Equation (31) is provided by [4], [7],
[20]

EW {exp[−
Z t

0

V (x(τ), y(τ))dτ ]} (34)

where EW represents the expectation according to the Wiener
measure. This corresponds to the celebrated Feynman-Kac formula
which states that the solution to (31) can be interpreted as the
expectation on all possible paths, each path being weighted by
the exponential of minus the total cost cumulated along the path.
Therefore, low-cost paths are favored with respect to high-cost
paths. The stochasticity of the process (the exploration) is regulated
by the diffusion constant D. The discrete RSP can therefore
be considered as a discrete-state discrete-time counterpart of the
Feynman-Kac diffusion process as well as the Bloch equation.



2) Initial and boundary conditions: We still have to precise
the initial conditions and the boundary conditions. By looking at
Equation (18), it can be seen that there is a unit source at node
1. Denoting the position of this source node 1 as (xf , yf ) (the
subscript f is for forward), the source becomes a delta of Dirac
centered at this location. The coefficient multiplying this delta of
Dirac is computed in the Appendix, and is equal to −4D. The
forward stationary equation (24) becomes

∆zf (x, y) =
1

D
V (x, y)zf (x, y)− 4δ(x− xf )δ(y − yf ) (35)

with D = 1/(4θ). It can be observed that D plays the same role
as a temperature (inverse of θ).

Exactly the same reasoning applies to the backward variable, and
the partial differential equation easily follows

∆zb(x, y) =
1

D
V (x, y)zb(x, y)− 4δ(x− xb)δ(y − yb) (36)

Concerning the boundary conditions, a barrier is produced by
defining an infinite cost on the boundaries, preventing the random
walkers from reaching them. This allows to mimic the discrete
situation of the RSP on a graph [23]. Dirichlet boundary conditions
stating that both zf and zb are equal to zero on the boundary
are therefore used. Thus, both in the continuous and the discrete
case, an internal boundary layer ∂Ω is added with V (x, y) =
∞ for (x, y) ∈ ∂Ω in the continuous case, and ckk′ =∞ for k′ ∈
∂Ω for the discrete one.

Notice that if we want to solve Equations (35-36) numerically
by using a simple finite difference approximation with a central
difference method, we exactly obtain Equations (14–15) with θ =
f(D), some function of the diffusion constant. Let us for instance
examine Equation (36). At the interior of the domain, Ω\∂Ω, the
difference equation corresponding to (36) is

D(zbx+ε,y +zbx−ε,y +zbx,y+ε+zbx,y−ε−4zbx,y) = ε2Vx,yz
b
x,y (37)

Isolating zbx,y in this last equation provides„
ε2Vx,y
D

+ 4

«
zbx,y = zbx+ε,y + zbx−ε,y + zbx,y+ε + zbx,y−ε (38)

Assuming a small ε2 in comparison with the value of D, this
last equation is similar (up to the order o(ε4)) to

4 exp

»
ε2Vx,y

4D

–
zbx,y = zbx+ε,y + zbx−ε,y + zbx,y+ε + zbx,y−ε (39)

which, in turn, is equivalent to the discrete counterpart (15) as
shown now. Indeed, considering a sufficient dense grid with a small
ε, ckk′ ' V (xk, yk)δs, let us rewrite Equation (15) as

4 exp[θV (xk, yk) δs] zbk =
X

k′∈N(k)

zbk′ (40)

Evaluating the zbk on the grid yields

4 exp[θVx,y δs] z
b
x,y = zbx+ε,y + zbx−ε,y + zbx,y+ε + zbx,y−ε (41)

which, by using δs = ε2 and D = 1/(4θ), corresponds exactly to
Equation (39).

Therefore, the RSP framework can be considered as the discrete-
state counterpart of the continuous-state Feynman-Kac process. The
expected number of visits at any position of the grid, as well as the
expected cost, are derived in the next subsection.

B. Computation of some of the basic quantities

We are ready now to compute the quantities of interest for the
continuous-state framework. The continuous-state equivalent of the
discrete partition function Z = z1n is zf (xb, yb) = zb(xf , yf ).
From Equation (11), the expected number of visits to position (x, y)
when following the optimal policy is

n(x, y) =
zf (x, y) zb(x, y)

zf (xb, yb)
, for (x, y) 6= (xf , yf ) (42)

The expected cost, initially computed with Equation (17), for
reaching (xb, yb) from (xf , yf ) is provided by

C =

ZZ
Ω

zf (x, y)zb(x, y)V (x, y) dx dy

zf (xb, yb)
(43)

Let us now turn to the investigation of the optimal policy.

IV. THE DYNAMIC, GLOBAL, OPTIMAL, POLICY

Let us consider the continuous-time, continuous-state, dynamics
of a random walker following the optimal policy provided by
Equation (12), or Equation (13) for the one-step ahead policy, in the
discrete case. It will be assumed that zb(x, y) is known (computed
through Equation (36)) and that the time is provided by the total
displacement along the trajectory, i.e. δt = δs (a unit velocity). The
objective is to derive the probability density, ρ∗t (x, y), of finding the
random walker in position (x, y) at time t when starting from some
position ρ∗0(x, y) = δ(x− x0)δ(y− y0) and following the optimal
randomized policy given by Equation (12), i.e., the continuous-state
continuous-time counterpart of Equation (13).

It takes to the random walker a time δt = δs = ε2 to make a net
displacement of ε so that taking a time step of δt and evaluating
Equation (13) at t + δt on position (x, y) of the two-dimensional
grid (see Figure (1)), as well as assuming that (x, y) is in the interior
of Ω so that the term δkn in the denominator of Equation (13)
cancels, yields

ρ∗t+δt(x, y) =
exp[−θVx+ε,yδs]

4

zbx,y

zbx+ε,y

ρ∗t (x+ ε, y)

+
exp[−θVx−ε,yδs]

4

zbx,y

zbx−ε,y
ρ∗t (x− ε, y)

+
exp[−θVx,y+εδs]

4

zbx,y

zbx,y+ε

ρ∗t (x, y + ε)

+
exp[−θVx,y−εδs]

4

zbx,y

zbx,y−ε
ρ∗t (x, y − ε) (44)

Remembering that δs = δt = ε2, and expanding ρ∗t+δt(x, y) as
well as the exponentials up to ε2 gives

ρ∗t (x, y) +
∂ρ∗t (x, y)

∂t
ε2 + o(ε3) =

zbx,y
`
1− θVx,yε2 + o(ε3)

´
4

×

266664ρ
∗
t (x+ ε, y)

zbx+ε,y| {z }
(i)

+
ρ∗t (x− ε, y)

zbx−ε,y| {z }
(ii)

+
ρ∗t (x, y + ε)

zbx,y+ε| {z }
(iii)

+
ρ∗t (x, y − ε)
zbx,y−ε| {z }

(iv)

377775
| {z }

[(i)+(ii)+(iii)+(iv)]

(45)



We now develop the terms (i)-(iv) appearing in the second line
of the previous equation (45). For instance, the first term (i) is

ρ∗t (x+ ε, y)

zbx+ε,y

=
ρ∗t (x, y)

zbx,y
+

∂

∂x

 
ρ∗t (x, y)

zbx,y

!
ε

+
1

2

∂2

∂x2

 
ρ∗t (x, y)

zbx,y

!
ε2 + o(ε3) (46)

We immediately observe that terms (i)-(iv) of order ε in Equa-
tion (45) cancel out because they are evaluated both at +ε and
−ε. Therefore, dropping the dependency on (x, y) and referring
∂z(x, y)/∂x as ∂xz for convenience,

[(i) + ...+ (iv)] = 4
ρ∗t

zb
+

»
∂2
x

„
ρ∗t

zb

«
+ ∂2

y

„
ρ∗t

zb

«–
ε2 + o(ε3)

(47)

For the second derivative term in the previous equation (47), we
obtain

∂2
x

„
ρ∗t

zb

«
=

(∂2
xρ
∗
t )(z

b)2 + 2ρ∗t (∂xz
b)2

(zb)3

−2(∂xρ
∗
t )(∂xz

b) + ρ∗t (∂
2
xz
b)

(zb)2
(48)

and the corresponding formula for ∂2
y(ρ∗t /z

b) is obtained by sub-
stituting y for x in Equation (48). Replacing the values of these
second derivatives in Equation (47) yields

[(i) + (ii) + (iii) + (iv)] = o(ε3) + 4
ρ∗t

zb

+

»
∆ρ∗t
zb

+ 2ρ∗t
||∇zb||2

(zb)3
− 2

∇ρ∗t .∇zb

(zb)2
− ρ∗t

∆zb

(zb)2

–
ε2 (49)

so that Equation (45) becomes

ρ∗t (x, y) +
∂ρ∗t (x, y)

∂t
ε2 + o(ε3) =

`
1− θVx,yε2 + o(ε3)

´
×»

ρ∗t +

„
∆ρ∗t

4
+ ρ∗t

||∇zb||2

2(zb)2
− ∇ρ∗t .∇zb

2zb
− ρ∗t

∆zb

4zb

«
ε2 + o(ε3)

–
Keeping the terms up to the second order in ε provides

∂ρ∗t
∂t

= −θV ρ∗t +
∆ρ∗t

4
+ ρ∗t

||∇zb||2

2(zb)2
− ∇ρ∗t .∇zb

2zb

− ρ∗t
∆zb

4zb| {z }
ρ∗t

∆zb

4zb −ρ
∗
t

∆zb

2zb

=
∆ρ∗t

4
+ ρ∗t

„
∆zb

4zb
− θV

«

− 1

2

„
−ρ∗t
||∇zb||2

(zb)2
+

∇ρ∗t .∇zb

zb
+ ρ∗t

∆zb

zb

«
(50)

Noticing that D = 1/(4θ) and rewriting Equation (36) as

∆zb

4zb
− θV = −δ(x− xb)δ(y − yb)

zb
(51)

then combining this last result with

−ρ∗t
||∇zb||2

(zb)2
+

∇ρ∗t .∇zb

zb
+ ρ∗t

∆zb

zb
= div(ρ∗t∇ ln zb), (52)

we finally obtain for the optimal policy (50):

∂ρ∗t (x, y)

∂t
=

∆ρ∗t (x, y)

4
− 1

2
div(ρ∗t (x, y)∇ ln zb(x, y))

− ρ∗t (xb, yb)δ(x− xb)δ(y − yb)
zb(xb, yb)

(53)

which corresponds to a Bloch diffusion equation with a drift
(diffusion process subject to an external force) [4] as in Equation
(33). The initial condition at t = 0 is centered on the point of
interest: ρ∗0(x, y) = δ(x − x0)δ(y − y0). The first term on the
right-hand side of Equation (53) is a diffusion term with θ = 1
or D = 1/4, the second one corresponds to a drift driven by the
force f = ∇ ln zb(x, y) (see Equation (33)) with γ = 1/2 and
where ln zb(x, y) plays the role of a potential known in advance
(it is provided by the solution of Equation (36)); eventually, the last
term corresponds to an absorption (sink) of the probability density
in the goal state.

Therefore, the algorithm for computing the optimal randomized
policy at a point of interest (x0, y0) and a time t is the following:

1) Find the backward variable zb(x, y) by solving Equation
(36) with respect to zb(x, y). ln zb(x, y) is the associated
potential.

2) Compute the optimal randomized policy ρ∗t (x, y), providing
the probability of jumping to position (x, y) from position
(x0, y0) during time step t, by solving Equation (53) with
respect to ρ∗t (x, y) at the point of interest (x0, y0) and for
the predefined length/time t.

On the other hand, the best direction to follow corresponds to the
orientation of the steepest ascent of ln zb, for which the gradient is
maximum. Thus, the deterministic optimal policy tells us that we
have to move in the direction of ∇ ln zb(x, y) at any point (x, y).
This very simple rule will provide the minimal cost direction when
θ is sufficiently large, and thus D is low – in which case the paths
probability distribution is peaked on the shortest paths. Interestingly,
this policy is similar to an existing technique for mobile robot
path planning [25], [24]. The authors use a diffusion equation akin
to Equation (36) (they, however, assume a constant V (x, y)) and
propose to follow the steepest ascent of the solution. They claim
that this technique provides the shortest path to the goal state, but no
proof is provided. These techniques are known as potential function
techniques in the field of robotics.

V. SIMULATIONS

A series of simulations have been performed in order to investi-
gate the behavior of our method. The first series of simulations (see
Figures (2–4)) illustrate the influence of the diffusion coefficient
on a diffusion media with a simple Gaussian obstacle. For each
value of D = {1, 0.1, 0.01}, four results (drawings) are reported
in a 40 × 40 grid of nodes, red being the highest probability of
passing through the node, blue being the lowest: (i) the Gaussian
obstacle, (ii) the logarithm of the forward variable computed from
Equation (35), (iii) the logarithm of the backward variable computed
from Equation (36), and (iv) the average number of visits per node
(Equation (42)). Both the forward and backward variables have been
calculated by means of a finite difference approximation.

A second series of simulations on a simple 36×36 maze (inspired
from the one used in [6]) with two obstacles of varying length
have also been performed. In this case, a single-source multiple-
destination maze problem with a constant diffusion parameter, D =
0.1, is solved. In this second case, the influence of the length of
the obstacle determines the shortest path and, thus, the chosen goal
node. Results are reported in Figures (5–7). It must be noted that
when both goals are equidistant from the source node (see Figure
(6)) both solution paths will be almost equally explored. On the
remaining two cases (see Figures (5) and (7)), the shortest goal will
be favored over the farthest one. It must be noted that, although this
is a single-source multiple-destination problem, our method extends
to the case of multiple-source multiple-destination problems.
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Fig. 2. Continuous RSP with Gaussian obstacle and D = 1.
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Fig. 3. Continuous RSP with Gaussian obstacle and D = 0.1.
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Fig. 4. Continuous RSP with Gaussian obstacle and D = 0.01.
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Fig. 5. First maze with one source (on the left of the drawing) and two
goal nodes (on the right of the drawing), with D = 0.1.
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Fig. 6. Second maze with the same source and goal nodes, with D = 0.1.
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Fig. 7. Third maze with the same source and goal nodes, with D = 0.1.



VI. CONCLUSIONS

This work investigated the continuous-state counterpart of the
discrete randomized shortest-path on a graph. It allowed to set
some bridges between biased random walks on a discrete graph
and the continuous-state Feynman-Kac diffusion process. From
the application side, it provides an optimal randomized policy
for solving continuous-state path planning problems with multiple
sources and multiple destinations. The main drawback of this model
is that it assumes that paths are independent, which is hardly the
case in practice. Further work will study the possibility of intro-
ducing a mass parameter (inertia) for smoothing the trajectories,
therefore avoiding abrupt changes in direction. Indeed, the Wiener
measure naturally accounts for a kinetic energy term cumulated
along the trajectory [4], [20]. This would also enhance the physical
interpretation of the model.
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APPENDIX

Let us derive the source term coefficient of Equations (35-36).
Rewriting the discrete equation for the forward variable on the grid
(Equation (20)) by including the source term gives

zfx,y =
exp[−θVx,yδs]

4
[zfx+ε,y + zfx−ε,y + zfx,y+ε + zfx,y−ε]

+ δ(x, xf )δ(y, yf ) (54)

where δ(x, xf ), δ(y, yf ) are Kronecker deltas. Expanding the dif-
ferent terms up to the second order as in Section III-A, Equation
(23), yields

zfx,y =

`
1− θVx,yε2 + o(ε3)

´
4

h
4 zfx,y + ∆zfx,yε

2 + o(ε3)
i

+ δ(x, xf )δ(y, yf ) (55)

Thus, by rearranging this last equation, we obtain

δ(x, xf )δ(y, yf ) = (θVx,yz
f
x,y −

1

4
∆zfx,y)ε2 + o(ε3) (56)

Summing this last equation over the entire grid and taking the
limit ε→ 0 with dx = dy = ε provides

1 =
X
x,y

δ(x, xf )δ(y, yf ) (57)

=
X
x,y

[(θVx,yz
f
x,y −

1

4
∆zfx,y)ε2 + o(ε3)] (58)

' 1

ε2

Z
x,y

dxdy [(θVx,yz
f
x,y −

1

4
∆zfx,y)ε2 + o(ε3)] (59)

=

Z
x,y

dxdy (θVx,yz
f
x,y −

1

4
∆zfx,y) + o(ε) (60)

Therefore, θVx,yzfx,y− 1
4
∆zfx,y = δ(x−xf )δ(y−yf ), with δ(x−

xf ), δ(y − yf ) being Dirac deltas. Since D = 1/(4θ), we finally
obtain Equation (35)

D∆zfx,y = Vx,yz
f
x,y − 4Dδ(x− xf )δ(y − yf ) (61)
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