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Herein, we analyze an efficient branching particle method for asymp-
totic solutions to a class of continuous-discrete filtering problems. Sup-
pose that t → Xt is a Markov process and we wish to calculate the
measure-valued process t → µt(·) .= P (Xt ∈ ·|σ{Ytk , tk ≤ t}), where
tk = kε and Ytk is a distorted, corrupted, partial observation of Xtk .
Then, one constructs a particle system with observation-dependent
branching and n initial particles whose empirical measure at time t,

µn
t , closely approximates µt. Each particle evolves independently of the

other particles according to the law of the signal between observation
times tk, and branches with small probability at an observation time.
For filtering problems where ε is very small, using the algorithm consid-
ered in this paper requires far fewer computations than other algorithms
that branch or interact all particles regardless of the value of ε. We an-
alyze the algorithm on Lévy-stable signals and give rates of convergence
for E1/2[‖µn

t − µt‖2
γ ], where || · ||γ is a Sobolev norm, as well as related

convergence results.
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1. Introduction. The filtering problems in many key, contemporary fields such as mathemat-
ical finance and communication networks initially appear to be resolved by the celebrated math-
ematical solutions of the Duncan-Mortensen-Zakai and Kushner-Stratonovich equations, which
have been known for over three decades. However, upon further reflection one realizes that these
equations are neither computer workable nor applicable at large. More theory is required keep-
ing: a) the ultimate computer enduse, and b) some real world applications in mind. Many of the
corresponding filtering problems are large enough that the mere storage of the exact solutions is
impractical. We require more implementable, practical methods of filtering, where the solutions
are almost optimal and can be stored. The introduction of particle approximations is natural
under these criteria.

The general problem of continuous-discrete filtering for Markov processes is concerned with
extracting information about a continuous-time Markov process t → Xt called the signal based
on the current record of discrete-time observations {Ytk , tk ≤ t} that are probabilistically linked
to the signal. The goal of filtering is to estimate past, present, or future values of ϕ (Xt) based on

1



our observation record {Ytk , tk ≤ t}. Direct implementation of the mathematical solution to these
filtering problems usually requires the on-line solution of an infinite dimensional (often parabolic)
equation (see however Kouritzin (2000) for counter examples where such infinite-dimensional
equation solution is not required), which is impossible to either implement precisely or store. For
these reasons, one may be forced to approximate. One exciting method of approximation for
continuous-discrete filtering problems was recently studied by Del Moral and collaborators (see
Del Moral (1996) for one of the earlier works), where, instead of solving a parabolic equation on-
line, one simulates particles so that the empirical measure of the particles is a good approximation
to the solution of the differential equation. Then, to account for the incoming observations, one
allows the particles to redistribute themselves to locations favored by the observations. This
second branching or interacting step is devised to ensure that new information obtained through
the observations can be incorporated into our conditional probability law of the signal given the
observation record. A thorough account of this interesting interacting particle method can be
found in Del Moral and Miclo (2000).

More recently, algorithms have been considered in Ballantyne, Chan and Kouritzin (2000) and
Del Moral, Kouritzin and Miclo (2001) that do not disturb most particles at each observation
time and thereby introduce far less resampling noise. Indeed, the huge performance gained by
only resampling those particles that need to be resampled was quantified experimentally in the
former paper and theoretically in the latter. Herein, we further develop and study the cautious
branching particle approach in Ballantyne, Chan and Kouritzin (2000), which was motivated
in part by particle system approximation scheme suggested by Sherman and Peskin (1986) for
deterministic reaction-diffusion equations and by the earlier branching particle method of Crisan
and Lyons (1997). To make our presentation clear, we choose to introduce and analyze our method
on Lévy-stable signal processes, however, this particle approximation method is extendable well
beyond our current setting as experiments have demonstrated.

Lévy-stable processes are one of the most basic and important classes of Markov processes.
They are widely used in various economic and physical systems. In particular, the use of Lévy-
stable processes in mathematical finance and communication networks has recently become more
popular. For instance, Lévy-stable models have been applied in the fields of portfolio theory,
asset, and option pricing (cf. Marinelli and Rachev (2002), Cartea and Howison (2004) and
the references therein); and Lévy-stable processes have been used to modeling teletraffic and to
approximating network traffic (cf. Garroppo, Giordano, Pagano and Procissi (2002) and Mikosch,
Resnick, Rootzén and Stegeman (2002)). These vital applications are motivation for us to analyze
our method on Lévy-stable signals.

We let (Ω,F , P 0) be a complete probability space and E0 be expectation with respect to
P 0. Suppose that X is a Rd1-valued Lévy-stable process on (Ω,F , P 0) with index α ∈ (0, 2] and
spectral measure Γ (cf. Samorodnitsky and Taqqu (1994)), i.e. X is a stochastic process on Rd1

such that X has independent increments, and there exists a finite measure Γ on the unit sphere
Sd1 of Rd1 such that for any θ = (θ1, . . . , θd1)

′ ∈ Rd1 and 0 ≤ s < t < ∞

ln E0 [exp{iθ′(Xt −Xs)}]

=

{−(t− s)
∫

Sd1
|θ′z|α(1− i sign (θ′z) tan(απ

2
))Γ(dz) for α 6= 1,

−(t− s)
∫

Sd1
|θ′z|(1 + 2i

π
sign (θ′z) ln |θ′z|)Γ(dz) for α = 1.

Hereafter, we use ′ to denote the transpose of a vector. We let 0 < ε ≤ 1, define tk
.
= kε
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for k = 1, 2, ..., and suppose that V is a standard Rd2-valued Brownian motion on (Ω,F , P 0)
independent of X. Then, we consider calculating the conditional probability law of signal Xt

given the multi-dimensional observations {Ytk , tk ≤ t}, defined by

Ytk = Ytk−1
+ h(Xtk)(tk − tk−1) +

(
Vtk − Vtk−1

)
,

via change of measure and particle approximation.
Our particle approximation scheme can be summarized as follows: We consider a branching

particle system which starts off with n particles and each particle has the “opportunity” to branch
and die every ε seconds. A particle reaching x at time tk− branches with small probability and
in this unlikely event that the particle does branch it either just dies or is replaced by two or
more independent particles starting at (tk, x). Efficiencies are gained at observation times in two
ways: The vast majority of particles do not branch at branching times for small ε, which reduces
computation related to duplicating or removing particles, and branching decisions only depend
on the very particle that may or may not branch so decisions require little processing. On the
other hand, the number of particles in our scheme does not stay constant but rather is a non-
trivial martingale. Still, there are effective ways to control the number of particles in practice,
by introducing additional births and deaths that do not bias estimates, and thereby to keep the
computations essentially constant over the various observation times.

Suppose that δx denotes the Dirac delta measure at x and

µn
t

.
=

1

n

‖µn
t ‖∑

i=1

δXi,n
t

(1)

is the empirical measure of the particle system if there are ‖µn
t ‖ particles {X1,n

t ,. . ., X
‖µn

t ‖,n
t } alive

at time t. Then, among other things, our results will imply that
∣∣∣∣

1

µn
t (Rd1)

∫

Rd1

ϕ(x)µn
t (dx)− E0 [ϕ(Xt)| {Ytk , tk ≤ t}]

∣∣∣∣ → 0 (2)

in probability, as ε → 0, n →∞, with a rate of convergence for all continuous bounded ϕ so long
as infε,n{ε1/2n} > 0. Indeed, we establish much more in terms of estimates on the error in (2)
and types of convergence, including 2nd-mean and almost sure.

2. Notation, Results, and Algorithm. In the current section we set our main notation,
state our results, and give our particle system algorithm to asymptotically solve our filtering
problem. The proofs of the stated results are given in a later section. During the course of a
proof we use the same symbol c for constants, although the exact value of the constant may
change. We show the dependence of c on relevant parameters unless suppression causes no
confusion. Throughout this note, we take | · | to be both Euclidean distance as well as absolute
value (depending on context). We fix a constant T > 0 and let 0 < ε ≤ 1. To conserve space, we
define

〈λ, ϕ〉 .
=

∫

Rd1

ϕ(x)λ(dx)

for all signed Borel measures λ and |λ|-integrable functions ϕ. Next, we let Bb(Rd1) denote the set
of all measurable bounded functions on Rd1 . For ϕ ∈ Bb(Rd1), we let ‖ϕ‖∞ denote its supremum
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norm. We denote by L the generator of the signal X, and define

T .
= {ϕ ∈ Bb(Rd1) : Lϕ ∈ Bb(Rd1)}.

Then, one can check that T contains all finite multivariate trigonometric series. Further, we let
S(Rd1) denote the set of all rapidly decreasing functions on Rd1 and assume that h = (h1, . . . , hd2)

′

with hi ∈ S(Rd1) for each 1 ≤ i ≤ d2. Finally, we let buc denote the greatest integer not more
than a real number u, let due denote the least integer not less than u, and adopt the convention
that a product over zero or a negative number of elements is one.

We define filtration
Y t .

= σ {Ytk , tk ≤ t} ∨ N
for the observations Y , where N is the collection of P 0-null sets of (Ω,F). Motivated by the
reference probability measure method for filtering, we define a new probability measure via

dP

dP 0

.
= ηT ,

where

ηt
.
=

bt/εc∏

k=1

exp

{
−h′(Xtk)(Vtk − Vtk−1

)− (h′h)(Xtk)(tk − tk−1)

2

}
, 0 ≤ t ≤ T. (3)

We define X t .
= σ{Xs, 0 ≤ s ≤ t}∨N and find that {ηt, t ∈ [0, T ]} is an {X T∨Y t}0≤t≤T -martingale

with respect to P 0. Under P, {Ytk − Ytk−1
, k = 1, 2, ..., bT/εc} is a sequence of N(0, εId2) random

vectors independent of X and the law of X remains unchanged. Yet, by (3) it follows that

η−1
T =

bT/εc∏

k=1

exp

{
h′(Xtk)(Ytk − Ytk−1

)− (h′h)(Xtk)(tk − tk−1)

2

}
.

We let E be expectation with respect to P and define 〈µt, ϕ〉 = E
[
ϕ(Xt)η

−1
t |Y t

]
for 0 ≤ t ≤ T .

Then, it follows from Bayes’ rule that for any ϕ ∈ Bb(Rd1)

E0
[
ϕ(Xt)|Y t

]
=

E
[
ϕ(Xt)η

−1
T |Y t

]

E
[
η−1

T |Y t
] =

E
[
ϕ(Xt)η

−1
t |Y t

]

E
[
η−1

t |Y t
] =

〈µt, ϕ〉
〈µt, 1〉

by the X T ∨Y t-martingale property of η−1
t with respect to P . For the processes that we will work

with later, one may always assume that X is cádlág and, hence, that µt is also (cf. Yor (1977)).
We always work with this cádlág version.

First, considering the optimal solution to the filtering problem, we have the following lemma
whose proof is sketched in the Appendix.

Lemma 1. Suppose that µ0 is the distribution of the initial signal state. Then, {µt, t ≥ 0} is
the unique measure-valued, {Y t}t≥0-progressive process satisfying

〈µt, ϕ〉 = 〈µ0, ϕ〉+

∫ t

0

〈µs,Lϕ〉 ds

+

bt/εc∑

k=1

〈
µtk−, ϕ

[
exp

{
(Ytk − Ytk−1

)′h− (tk − tk−1)h
′h

2

}
− 1

]〉
(4)
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for all ϕ ∈ T .

Moving to our particle approximation, we recall that ‖µn
t ‖ and µn

t denote respectively the
number of particles alive and the empirical measure for the particles as in the introduction. Once

we have particles
{
X i,n

t

}‖µn
t ‖

i=1
, t ≥ 0, we can form our approximation to µt via empirical measure

(1). Therefore, our pressing need is to find a good generation method for the particles. We
suggest using the algorithm below to produce particles whose empirical measure is shown in the
sequel to converge nicely to {µt, t ≥ 0}.

To ease the notation in what follows, we define

%ε
k(x)

.
= exp

{
(Ytk − Ytk−1

)′h(x)− (tk − tk−1)(h
′h)(x)

2

}
− 1, (5)

DY ε
t (x)

.
=

∞∑

k=1

δkε(t)%
ε
k(x) and ξε

k(x)
.
=

{
%ε

k(x) if %ε
k(x) < 0,

%ε
k(x)− b%ε

k(x)c otherwise.

Moreover, due to the fact that we have both continuous and discrete components to our systems
it will be convenient in the sequel to interpret δkε in two ways:

∫ u

s

δkε(t)dt =
{

1 if kε ∈ (s, u],
0 otherwise

and
l∑

j=i

δkε(jε) =
{

1 if k ∈ {i, i + 1, ..., l},
0 otherwise.

Next, we let {ρi}n
i=1, {X̃ i}∞i=1,

{
U i,k

}∞
i,k=1

denote respectively n independent random vectors

each with the distribution µ0, a sequence of independent Rd1-valued Lévy-stable processes with
index α and spectral measure Γ, a sequence of independent uniform random variables all on

the same probability space (Ω∗,F∗, P ∗) and form the product probability space
(
Ω̂, F̂ , P̂

)
.
=

(Ω⊗ Ω∗,F ⊗ F∗, P 0 ⊗ P ∗). Let Ê be expectation with respect to P̂ . Then, to construct our
particle system to approximate µt, we do the following:

1. Let ||µn
0 || = n and X i,n

0
.
= ρi for i = 1, ..., ||µn

0 || (*Assign initial particle locations*)

2. For k = 1, 2, ... do the following:

(a) Set X i,n
t = X i,n

tk−1
+(X̃ i

t − X̃ i
tk−1

) on [t, i) ∈ [tk−1, tk)×{1, ..., ‖µn
tk−1

‖} (*Evolve particles
as signal*)

(b) For i = 1, . . . , ||µn
tk−1

|| do

i. If %ε
k(X

(i,n)
tk− ) ≥ 0 (*Branch*)

A. Replace particle X i,n
tk− with m

.
= b%ε

k(X
i,n
tk−)c + 1 particles X

(i,1),n
tk

, . . ., X
(i,m),n
tk

at site X i,n
tk−

B. Add 1 more particle X
(i,m+1),n
tk

at site X i,n
tk− if U i,k ≤ %ε

k(X
i,n
tk−)− b%ε

k(X
i,n
tk−)c

ii. Otherwise

A. Make no change if U i,k > |%ε
k(X

i,n
tk−)|

B. Kill X i,n
tk− if U i,k ≤ |%ε

k(X
i,n
tk−)| (*Particle will just be removed*)
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3. Relabel the alive particles to be
{
X i,n

tk

}‖µn
tk
‖

i=1
so that

∥∥µn
tk

∥∥ is the number of particles alive.

Our main contributions can be considered as the popularization of this algorithm and its
analysis. As we already mentioned, U i,k ≤

∣∣ξε
k(X

i,n
tk−)

∣∣, hence branching or killing, will seldom
occur at a particular observation for small ε > 0. In preparation to listing our main analytic
results, we wish now to assert that our empirical measures or particle density profiles

µn
t

.
=

1

n

‖µn
t ‖∑

i=1

δXi,n
t

do henceforth pertain only to the particles
{
X i,n

t

}‖µn
t ‖

i=1
, t ≥ 0, generated by this algorithm. We

define new filtrations {F t}t≥0 , {Gt}t≥0 to keep track of current information in our empirical
measures and our whole particle system construction via

F t .
=

⋂

δ>0

σ
{
X i,n

s , i = 1, ..., ‖µn
s‖ , s ≤ t + δ

} ∨ Y t,

Gt .
=

⋂

δ>0

σ
{
X i,n

s , i = 1, ..., ‖µn
s‖ , s ≤ t + δ

} ∨ YT ∨ σ
{
U i,k, tk ≤ t, i = 1, 2, ...

}
.

Further, we interpret our particle system approximation as a (purely atomic) measure-valued
cádlág process through the following stochastic equation:

Proposition 2. Suppose that {µn
t , t ≥ 0} is the particle density profiles constructed by the

preceding algorithm. Then

〈µn
t , ϕ〉 = 〈µn

0 , ϕ〉+

∫ t

0

〈µn
s ,Lϕ〉 ds +

bt/εc∑

k=1

〈
µn

kε−, %ε
kϕ

〉
+Mn

t (ϕ) (6)

for all ϕ ∈ T , where {Mn
t (ϕ)}t≥0 is a cádlág {Gt}t≥0-martingale. We define ÊU to be expectation

taken only with respect to the {U i,k}. Then

ÊU {[Mn(ϕ)]t} =
1

n2

bt/εc∑

k=0

||µn
tk
||∑

i=1

([
ϕ

(
X i,n

)]
tk+1∧t

− [
ϕ

(
X i,n

)]
tk

)

+
1

n

bt/εc∑

k=1

〈
µn

kε−,
(|ξε

k| − (ξε
k)

2) ϕ2
〉
. (7)

Moreover, we have that

Ê




∣∣∣∣∣∣

bt/εc∑

k=bs/εc+1

fk

(
[Mn(ϕ)]kε − ÊU {[Mn(ϕ)]kε}

)
∣∣∣∣∣∣

r


≤ c(r)(‖h′h‖∞ ∨ 1)
r
2

∣∣∣∣∣∣

bt/εc∑

k=bs/εc+1

f 2
k

∣∣∣∣∣∣

r
2

ε
1
2

nr

(
sup

0≤τ≤T
Ê [〈µn

τ , 1〉r]
)
||ϕ||2r

∞ (8)
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for any {fk}∞k=1 ⊂ R, where r ≥ 2 and c(r) > 0 is a constant independent of d1, d2, ε, n, t, s, ϕ.

This representation lemma differs from standard formulations because it contains both con-
tinuous and discrete time components. It is possible to come up with a more complete martingale
problem description by considering more general functionals F (〈µn

t ,ϕ〉) instead of just 〈µn
t , ϕ〉.

However, our representation is sufficient for our purposes. To prove Proposition 2, we need the
following Lemma 3. The proofs of Lemma 3 and Proposition 2 are given in the Appendix.

Lemma 3. Suppose r ≥ 1. Then, there is a constant c(r) > 0 independent of d1, d2, ε, x, k
such that

Ê [|%ε
k(x)|r] ≤ c(r)‖h′h‖

r
2∞ε

r
2

for all x ∈ Rd1 and k = 1, 2, . . .

By Lemma 1, {µt, t ≥ 0} is the unique measure-valued, {Y t}t≥0-progressive process such that

〈µt, ϕ〉 = 〈µ0, ϕ〉+

∫ t

0

〈µs−, Bε
sϕ〉 ds (9)

for all ϕ ∈ T , where
Bε

sϕ
.
= Lϕ + DY ε

s ϕ. (10)

Note, here and in the sequel, integrals like
∫ t

0
〈µs−, Bε

sϕ〉 ds should be interpreted in the Lebesgue
-Stieltjes sense including jumps at t but not at 0 (owing to the fact that DY ε

s is a purely atomic
measure and not a function). We let γ < −d1/2 and define

‖λ‖2
γ

.
=

∫

Rd1

∣∣∣λ̂(θ)
∣∣∣
2

γ(dθ), γ(dθ)
.
= (1 + |θ|2)γdθ,

λ̂(θ)
.
= 〈e−θ, λ〉 , e−θ(x)

.
= e−iθ′x, ∀θ ∈ Rd1 ,

where λ̂ denotes Fourier-Stieltjes transform for signed measure λ. In the sequel, we use ‖ϕ‖L2(γ)

(‖ϕ‖2) to denote the L2-norm of a function ϕ in L2(Rd1 ; γ(dθ)) (L2(Rd1 ; dθ)). We denote ‖Γ‖ =
Γ(Sd1). For m ∈ N, we define

〈〈h〉〉m .
= sup

1≤i≤d2,|τ |≤m





∥∥∥∥∥

[ ∏

1≤j≤d1

(|xj|+ 1)

]
Dτhi

∥∥∥∥∥
∞



 , (11)

where τ = (τ1, . . . , τd1) with τj ∈ Z+ is a multi-index, |τ | = ∑d1

j=1 τj and Dτ = ∂|τ |/(∂xτ1
1 · · · ∂x

τd1
d1

).
Now, we can state our main result.

Theorem 4. Let {µn
t , t ≥ 0} be our particle density profile as described above. Suppose that

γ < −(d1/2 + 2α) and 0 < ε ≤ 1, n ∈ N satisfying Ξ
.
= infε,n{ε1/2n} > 0. Then, there is a

constant c(Ξ, d1, α, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2) > 0 independent of ε, n, t, s such that

Ê
1
2 [‖(µn

t − µt)−(µn
s − µs)‖2

γ] ≤
c(Ξ, d1, α, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)

ε
1
8 n

1
2

{
(t− s)

1
4 + (t− s)

+ε
1
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
2

+ ε
1
4

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
4

}
(12)
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for all 0 ≤ s < t ≤ T .

Corollary 5. Let {µn
t , t ≥ 0} be our particle density profile as described above. Suppose

that α = 2, γ < −(d1/2 + 4), β > 1/4 and 0 < ε ≤ 1, n ∈ N satisfying Ξ
.
= infε,n{ε1/2n} > 0.

Then, there is a constant c(β, Ξ, d1, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2) > 0 independent of ε, n such that

Ê

[
sup

0≤s<t≤T
‖(µn

t − µt)− (µn
s − µs)‖2

γ

]
≤ c(β, Ξ, d1, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)

εβn
. (13)

Remark 6. For the interacting mechanism chosen in the works of Del Moral (1996), the
number of particles remains constant and particles redistribute themselves around existing par-
ticle sites according to a multinomial distribution at observation times. Specifically, suppose{
X1,n

tk−, ..., Xn,n
tk−

}
denotes the n particle locations used to approximate the filtering problem solu-

tion just prior to tk,
{
W 1,n

k , ..., W n,n
k

}
are the normalized weights for the particles, and

{
X1,n

tk
, ... ,

Xn,n
tk

}
is the system immediately following the interaction. Then, the X i,n

tk
’s are obtained from the

Xj,n
tk−’s by having each X i,n

tk
choose starting location Xj,n

tk− with probability W j,n
k independent of

all other particle decisions. Each weight W j,n
k is a function of all the previous generation particles{

X1,n
tk−, ..., Xn,n

tk−
}
, the current observation Ytk , the conditional distribution of the observation given

the current signal state Xtk , and the conditional distribution of signal Xtk given all the previous
observations

{
Ytj , j < k

}
. Clearly,

∑n
j=1 W j,n

k = 1 and the event
{
X i,n

tk
6= X i,n

tk−
}

has probabil-

ity 1 −W i,n
k (ω) so the expected number of branches or jumps created at an observation time is

n− 1 even when the observation interval or the time between jumps is very small. Moreover, as
mentioned in Crisan, Del Moral and Lyons (1999), the decision of where each particle will jump
to requires sampling all particles, and the overall result is that a large amount of computational
work must be done at observation times.

Remark 7. In Crisan (2003), rates of convergence for a branching particle approximation
to the solution of the Zakai equation are deduced. For a class of test functions, exact rates of
convergence are established for the filtering model with diffusion signal and continuous observa-
tions. The analysis in Crisan (2003) hinges on a powerful representation formula of the variance
of the branching mechanism in terms of the local time of an exponential martingale, which is quite
different from the analysis in this paper. Throughout this paper Fourier analysis is used, which
enables us to obtain powerful rates of convergence in Sobolev norms. (We refer the interested
reader to Blount and Kouritzin (2001) and references therein for some other works via Fourier
analysis, which are close in spirit to our approach.) The analysis of the existing interacting and
branching methods for continuous-discrete filters is rather complicated as is evidenced by limited
number of existing estimates especially involving the time intervals between observations. As
suggested in Crisan (2003), the continuous observation time set-up makes the branching method
converge slower. Our Theorem 4 and Corollary 5 reveal the subtle relationship between the num-
ber of initial particles and the length of the time intervals between observations. In particular,
the convergence of the algorithm is ensured if infε,n{ε1/2n} > 0. In a forthcoming work, we look
forward to further developing the spectral method in this paper to obtain rates of convergence
for more general (not necessary diffusion) Markov processes and other recently developed particle
filters.
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3. Proofs of Theorem 4 and Corollary 5.

3.1. Auxiliary Results Used to Establish Theorem 4 and Corollary 5.

Lemma 8. Let Z be a Rd1-valued Lévy-stable process on (Ω̂, F̂ , P̂ ) with index α ∈ (0, 2] and
spectral measure Γ. We define Ẑt(θ)

.
= e−θ(Zt) and ‖[Ẑ(θ)]t‖ .

= [ReẐ(θ)]t + [ImẐ(θ)]t, ∀θ ∈ Rd1,
0 ≤ t ≤ T . Then, for 0 ≤ s < t ≤ T

Ê
[∥∥∥

[
Ẑ(θ)

]
t

∥∥∥−
∥∥∥
[
Ẑ(θ)

]
s

∥∥∥
]

= 2(t− s)

∫

Sd1

|θ′z|αΓ(dz). (14)

Suppose r > 1. Then, there is a constant c(r) > 0 such that for any 0 ≤ s < t ≤ T

Ê
[(∥∥∥

[
Ẑ(θ)

]
t

∥∥∥−
∥∥∥
[
Ẑ(θ)

]
s

∥∥∥
)r]

≤ c(r)(t− s)

[(∫

Sd1

|θ′z|αΓ(dz)

)∨ (∫

Sd1

|θ′z|αΓ(dz)

)r]
. (15)

Moreover, if α = 2, then

∥∥∥
[
Ẑ(θ)

]
t

∥∥∥−
∥∥∥
[
Ẑ(θ)

]
0

∥∥∥ = 2t

∫

Sd1

|θ′z|2Γ(dz). (16)

Proof. For 0 ≤ s < t ≤ T , we let {τm
j , j = 0, 1, . . . , km}∞m=1 be a refining sequence of

partitions for [s, t] with s = τm
0 < τm

1 < · · · < τm
km

= t and define

πm
s,t

.
=

km∑
j=1

∣∣∣Ẑτm
j

(θ)− Ẑτm
j−1

(θ)
∣∣∣
2

, δ(πm
s,t)

.
= max

1≤j≤km

(τm
j − τm

j−1).

Then, we find by direct calculation that

Ê
[∥∥∥

[
Ẑ(θ)

]
t

∥∥∥−
∥∥∥
[
Ẑ(θ)

]
s

∥∥∥
]

= lim
δ(πm

s,t)→0
Ê

[
πm

s,t

]

= lim
δ(πm

s,t)→0
Ê

{
km∑
j=1

[
2−

(
e−θ

(
Zτm

j
− Zτm

j−1

)
+ eθ

(
Zτm

j
− Zτm

j−1

))]}

= lim
δ(πm

s,t)→0





∑km

j=1 2
(
1− exp

{
−(τm

j − τm
j−1)

∫
Sd1
|θ′z|αΓ(dz)

}

· cos((τm
j − τm

j−1)
∫

Sd1
|θ′z|α sign (θ′z) tan(απ

2
)Γ(dz))

)
for α 6= 1,

∑km

j=1 2
(
1− exp

{
−(τm

j − τm
j−1)

∫
Sd1
|θ′z|Γ(dz)

}

· cos((τm
j − τm

j−1)
∫

Sd1

2
π
|θ′z| sign (θ′z) ln |θ′z|Γ(dz))

)
for α = 1

= 2(t− s)

∫

Sd1

|θ′z|αΓ(dz).
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By (14), to prove (15), we may assume without loss of generality that r ∈ N. By the independence
of the increments of Z, we find that

Ê
[(∥∥∥

[
Ẑ(θ)

]
t

∥∥∥−
∥∥∥
[
Ẑ(θ)

]
s

∥∥∥
)r]

= lim
δ(πm

s,t)→0
Ê

[(
πm

s,t

)r]

= lim
δ(πm

s,t)→0
Ê

[{
km∑
j=1

[
2−

(
e−θ

(
Zτm

j
− Zτm

j−1

)
+ eθ

(
Zτm

j
− Zτm

j−1

))]}r]

= lim
δ(πm

s,t)→0

∑
α1+···+αkm=r

α1,...,αkm∈Z+

(
r

α1, . . . , αkm

)

·
km∏
j=1

Ê
[{

2−
(
e−θ

(
Zτm

j
− Zτm

j−1

)
+ eθ

(
Zτm

j
− Zτm

j−1

))}αj
]
. (17)

Note that for αj ≥ 1, 1 ≤ j ≤ km

Ê
[{

2−
(
e−θ

(
Zτm

j
− Zτm

j−1

)
+ eθ

(
Zτm

j
− Zτm

j−1

))}αj
]

=

αj∑

l=0

{(
αj

l

)
2l(−1)αj−l

αj−l∑
q=0

[(
αj − l

q

)
exp{−(τm

j − τm
j−1)

·




∫
Sd1
|(2q + l − αj)θ

′z|α(1− i sign ((2q + l − αj)θ
′z) tan απ

2
)Γ(dz)}

]}
for α 6= 1,

∫
Sd1
|(2q + l − αj)θ

′z|(1 + 2i
π

sign ((2q + l − αj)θ
′z) ln |θ′z|)Γ(dz)}

]}
for α = 1

= −
αj∑

l=0





(
αj

l

)
2l(−1)αj−l

αj−l∑
q=0

[(
αj − l

q

)

·(τm
j − τm

j−1)

∫

Sd1

|(2q + l − αj)θ
′z|αΓ(dz)

]}
+ O

(
(τm

j − τm
j−1)

2
)

≤ c(r)(τm
j − τm

j−1)

∫

Sd1

|θ′z|αΓ(dz) + O
(
(τm

j − τm
j−1)

2
)
. (18)

Thus, by (17) and (18), we find that

Ê
[(∥∥∥

[
Ẑ(θ)

]
t

∥∥∥−
∥∥∥
[
Ẑ(θ)

]
s

∥∥∥
)r]

≤ lim
δ(πm

s,t)→0

∑
α1+···+αkm=r

α1,...,αkm∈Z+

(
r

α1, . . . , αkm

)

·
∏
αj≥1

[
c(r)(τm

j − τm
j−1)

∫

Sd1

|θ′z|αΓ(dz) + O
(
(τm

j − τm
j−1)

2
)
]

≤ c(r)(t− s)

[(∫

Sd1

|θ′z|αΓ(dz)

) ∨ (∫

Sd1

|θ′z|αΓ(dz)

)r]
.
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If α = 2, then we find by the independence of the increments of Z that

Ê




(∥∥∥
[
Ẑ(θ)

]
t

∥∥∥−
∥∥∥
[
Ẑ(θ)

]
0

∥∥∥− 2t

∫

Sd1

|θ′z|2Γ(dz)

)2



= lim
δ(πm

0,t)→0
Ê




(
πm

0,t −
km∑
j=1

2

(
1− exp

{
−(τm

j − τm
j−1)

∫

Sd1

|θ′z|2Γ(dz)

}))2



= lim
δ(πm

0,t)→0

km∑
j=1

Ê

{[
2 exp

{
−(τm

j − τm
j−1)

∫

Sd1

|θ′z|2Γ(dz)

}

−
(
e−θ

(
Zτm

j
− Zτm

j−1

)
+ eθ

(
Zτm

j
− Zτm

j−1

))]2
}

= lim
δ(πm

0,t)→0

km∑
j=1

[
4 exp

{
−2(τm

j − τm
j−1)

∫

Sd1

|θ′z|2Γ(dz)

}

−8 exp

{
−2(τm

j − τm
j−1)

∫

Sd1

|θ′z|2Γ(dz)

}

+2

(
1 + exp

{
−4(τm

j − τm
j−1)

∫

Sd1

|θ′z|2Γ(dz)

})]

= 0.

Therefore, (16) follows.

Lemma 9. Suppose r ≥ 1 and 0 < ε ≤ 1, n ∈ N satisfying Ξ
.
= infε,n{ε1/2n} > 0. Then,

there is a constant c(r, Ξ) > 0 independent of d1, d2, ε, n such that the empirical measure of our
particle system satisfies

sup
0≤t≤T

Ê
1
r [〈µn

t , 1〉r] ≤ c(r, Ξ)(‖h′h‖∞ ∨ 1)r.

Proof. By (6), (56) in the Appendix, Lemma 3 and induction, one finds that sup0≤t≤T

Ê [〈µn
t , 1〉r] < ∞. We define

ζε
k

.
= |ξε

k| − (ξε
k)

2 . (19)

From (6)-(8) with ϕ = 1, noting that {∑bt/εc
k=1

〈
µn

kε−, %ε
k

〉}t≥0 is an {Ft−}t≥0-martingale and us-
ing Burkholder’s inequality, independence, Jensen’s inequality, Lemma 3, Minkowski’s integral
inequality and (19), we find that

Ê [〈µn
t , 1〉r]

≤ c(r)



Ê [〈µn

0 , 1〉r] + Ê






bt/εc∑

k=1

〈
µn

kε−, %ε
k

〉



r


+

(
Ê

[∣∣∣ÊU {[Mn(1)]t}
∣∣∣

r
2

]
+ Ê

[∣∣∣[Mn(1)]t − ÊU {[Mn(1)]t}
∣∣∣

r
2

])}
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= c(r)



1 + Ê






bt/εc∑

k=1

〈
µn

kε−, %ε
k

〉



r


+


 1

n
r
2

Ê






bt/εc∑

k=1

〈
µn

kε−, ζε
k

〉



r
2


 + Ê

[∣∣∣[Mn(1)]t − ÊU {[Mn(1)]t}
∣∣∣

r
2

]







≤ c(r)



1 +

⌊
t

ε

⌋ r
2
−1

‖h′h‖
r
2∞ε

r
2

bt/εc∑

k=1

Ê
[〈

µn
(k−1)ε, 1

〉r]

+

⌊
t

ε

⌋ r
2
−1

ε
r
4

n
r
2

sup
0≤s≤T

Ê
[
〈µn

s , 1〉 r
2

]
+ (‖h′h‖∞ ∨ 1)

r
2

⌊
t

ε

⌋ r
4 ε

1
2

n
r
2

sup
0≤s≤T

Ê
[
〈µn

s , 1〉
r
2

]}
,

where we have assumed without loss of generality that r ≥ 4 above. Applying the discrete version
of Gronwall’s inequality, one thus discovers that

sup
0≤t≤T

Ê [〈µn
t , 1〉r] ≤ c(r)(‖h′h‖∞ ∨ 1)

r
2

(
1 +

ε
1
2

ε
r
4 n

r
2

sup
0≤t≤T

Ê
[
〈µn

t , 1〉 r
2

])

≤ c(r)(‖h′h‖∞ ∨ 1)
r
2

(
1 +

ε
1
2

ε
r
4 n

r
2

(
sup

0≤t≤T
Ê [〈µn

t , 1〉r]
) 1

2

)
.

Therefore,

sup
0≤t≤T

Ê [〈µn
t , 1〉r] ≤




c(r)(‖h′h‖∞∨1)
r
2 ε

1
2

ε
r
4 n

r
2

+
√

c2(r)(‖h′h‖∞∨1)rε

ε
r
2 nr

+ 4c(r)(‖h′h‖∞ ∨ 1)
r
2

2




2

≤ c(r, Ξ)(‖h′h‖∞ ∨ 1)r.

The following maximal inequality is a consequence of a theorem of Longnecker and Serfling
(1977) (cf. also Kouritzin and Heunis (1994)) and is used in (13) above.

Lemma 10. Let 0 ≤ U1 < U2 < ∞ and suppose that {Qt, U1 ≤ t ≤ U2} is a process assuming
values in some normed vector space (Z, ‖·‖)with the following conditions: (i) t → Qt(ω) is right
continuous on [U1, U2] for almost all ω, (ii) There exist constants µ > 1 and ν > 0 such that
E [‖Qt −Qs‖ν ] ≤ [h(s, t)]µ for all U1 ≤ s < t ≤ U2, where h(t, s) is a nonnegative function
satisfying h(s, t) + h(t, u) ≤ h(s, u) for all U1 ≤ s < t < u ≤ U2. Then, there exists a constant
Aµ,ν depending only upon µ, ν such that

E

[
sup

U1≤s<t≤U2

‖Qt −Qs‖ν

]
≤ Aµ,ν [h(U1, U2)]

µ .

Proof. Let
{
tli, i = 0, 1, ..., nl

}∞
l=1

be a refining sequence of partitions for [U1, U2] with U1 =

tl0 < tl1 < · · · < tlnl
= U2 and define

τ l
k

.
= Qtlk

−Qtlk−1
, gl(i, j)

.
= h(tlj, t

l
i−1) ∀i, j, k ∈ {1, ..., nl} , i < j.
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Then, we can apply Theorem 1 of Longnecker and Serfling (1977) to find that there is a constant
Aµ,ν depending only upon µ, ν such that

E

[
sup

U1≤tli<tlj≤U2

∥∥∥Qtlj
−Qtli

∥∥∥
ν
]

= E

[
sup

1≤i<j≤nl

∥∥∥∥∥
j∑

k=i+1

τ l
k

∥∥∥∥∥

ν]

≤ 2ν

[
sup

1≤j≤nl

∥∥∥∥∥
j∑

k=1

τk

∥∥∥∥∥

ν]

≤ Aµ,ν [gl(1, nl)]
µ

= Aµ,ν [h(U1, U2)]
µ .

The lemma therefore follows from monotone convergence and the observation that right continuity
guarantees that

sup
U1≤tli<tlj≤U2

∥∥∥Qtlj
−Qtli

∥∥∥
l→∞
↗ sup

U1≤s<t≤U2

‖Qt −Qs‖ν .

3.2. Proof of Theorem 4. Recalling (5), (6), (9) and (10), we find that µn − µ satisfies

〈µn
t − µt, ϕ〉 = 〈µn

0 − µ0, ϕ〉+

∫ t

0

〈
µn

s− − µs−, Bε
sϕ

〉
ds +Mn

t (ϕ)

for all ϕ ∈ T , where Mn
t (ϕ) is the martingale of Proposition 2. We define

`(θ)
.
=

{− ∫
Sd1
|θ′z|α(1 + i sign (θ′z) tan(απ

2
))Γ(dz) for α 6= 1,

− ∫
Sd1
|θ′z|(1− 2i

π
sign (θ′z) ln |θ′z|)Γ(dz) for α = 1.

Then, using ϕ = e−θ, we find that

〈µn
t − µt, e−θ〉 = 〈µn

0 − µ0, e−θ〉
+

∫ t

0

〈
µn

s− − µs−, `(θ)e−θ + DY ε
s e−θ

〉
ds + M̂n

t (θ), ∀θ ∈ Rd1 . (20)

Hereafter, to ease the notation, we let M̂n
t (θ) = Mn

t (e−θ). We define
∥∥∥
[
M̂n(θ)

]
t

∥∥∥ .
=

[
ReM̂n(θ)

]
t
+

[
ImM̂n(θ)

]
t
,

∥∥∥
[
X̂ i,n(θ)

]
t

∥∥∥ .
=

[
ReX̂ i,n(θ)

]
t
+

[
ImX̂ i,n(θ)

]
t
, X̂ i,n

t (θ)
.
= e−θ(X

i,n
t ).

Then, from Proposition 2 and (19), we find that {M̂n
t (θ)}t≥0 is a complex martingale with

ÊU
[∥∥∥

[
M̂n(θ)

]
t

∥∥∥
]

=
1

n2

bt/εc∑

k=0

||µn
tk
||∑

i=1

(∥∥∥∥
[
X̂ i,n(θ)

]
tk+1∧t

∥∥∥∥−
∥∥∥∥
[
X̂ i,n(θ)

]
tk

∥∥∥∥
)

+
1

n

bt/εc∑

k=1

〈
µn

kε−, ζε
k

〉
. (21)
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Next, we divide 〈µn
t − µt, e−θ〉 into components:

〈µn
t − µt, e−θ〉 = ûn

t (θ) + v̂n
t (θ) + χ̂n

t (θ) .

Here, we define

ûn
t (θ)

.
=

∫ t

0

`(θ)ûn
s (θ) ds + M̂n

t (θ), (22)

χ̂n
t (θ)

.
= 〈χn

t , e−θ〉 (23)

with

〈χn
t , ϕ〉 .

= 〈µn
0 − µ0, ϕ〉+

∫ t

0

〈
χn

s− , Bε
sϕ

〉
ds, ∀ϕ ∈ T , (24)

and
v̂n

t (θ)
.
= 〈µn

t − µt, e−θ〉 − ûn
t (θ)− χ̂n

t (θ) . (25)

Note that in the above definition, χn
t is just the unnormalized filtering process µt with the initial

distribution µn
0 − µ0. We define

A1
.
= Ê

1
2

[
‖ûn

t − ûn
s‖2

L2(γ)

]
,

A2
.
= Ê

1
2

[
‖v̂n

t − v̂n
s ‖2

L2(γ)

]
,

A3
.
= Ê

1
2

[
‖χ̂n

t − χ̂n
s‖2

L2(γ)

]
.

Then,
E

1
2 [‖(µn

t − µt)− (µn
s − µs)‖2

γ] ≤ A1 + A2 + A3 (26)

by Minkowski’s inequality. In the following, we will estimate Ai, 1 ≤ i ≤ 3, one by one.

(a) Estimation of A1.

One finds from Proposition 2 that the following Wiener integral makes sense and from (22)
as well as integration by parts that

ûn
t (θ) =

∫ t

0

exp {(t− s)`(θ)} dM̂n
s (θ). (27)

Fixing a r ≥ 2, one finds from (27) that for 0 ≤ s < t ≤ T

Ê
[|ûn

t (θ)− ûn
s (θ)|2r]

= Ê

[∣∣∣∣[exp {(t− s)`(θ)} − 1] ûn
s (θ) +

∫ t

s

exp {(t− τ)`(θ)} dM̂n
τ (θ)

∣∣∣∣
2r

]
.

Yet, using Burkholder’s inequality, we find that

Ê
[|ûn

t (θ)− ûn
s (θ)|2r]

≤ c(r)
{| exp {(t− s)`(θ)} − 1|2r

·Ê
[(∫ s

0

exp

{
−2(s− τ)

∫

Sd1

|θ′z|αΓ(dz)

}
d

∥∥∥
[
M̂n(θ)

]
τ

∥∥∥
)r]

+Ê

[(∫ t

s

exp

{
−2(t− τ)

∫

Sd1

|θ′z|αΓ(dz)

}
d

∥∥∥
[
M̂n(θ)

]
τ

∥∥∥
)r]}

. (28)

14



We define

Mn,e
τ (θ)

.
=

1

n

bτ/εc∑

k=0

‖µn
tk
‖∑

i=1

(
e−θ(X

i,n
tk+1∧τ )− e−θ(X

i,n
tk

)−
∫ tk+1∧τ

tk

(Le−θ)(X
i,n
u )du

)

and

Mn,b
τ (θ)

.
=

1

n

bτ/εc∑

k=1

‖µn
tk−‖∑
i=1

〈
δXi,n

tk−
, e−θ

〉 [
sign

(
ξε
k(X

i,n
tk−)

)
1{U i,k∈[0,|ξε

k(Xi,n
tk−)|)} − ξε

k(X
i,n
tk−)

]
.

Then, M̂n,e
τ (θ) and M̂n,b

τ (θ) are respectively the evolving and branching portions of the martingale
M̂n

τ (θ). Considering (21) and separating ûn
t (θ) into parts driven by M̂n,e

τ (θ) and M̂n,b
τ (θ), we

find from double use of Hölder’s inequality and Lemma 8 that the evolving part of (28) satisfies

Ê
1
r

[
|ûn,e

t (θ)− ûn,e
s (θ)|2r

]

≤ c(r)
{
| exp {(t− s)`(θ)} − 1|2rÊ

[∥∥∥
[
M̂n,e(θ)

]
s

∥∥∥
r]

+

(
Ê

[∫ t

s

exp

{
−4r(t− τ)

∫

Sd1

|θ′z|αΓ(dz)

}
d

∥∥∥
[
M̂n,e(θ)

]
τ

∥∥∥
]) 1

2

·
(

Ê

[(∥∥∥
[
M̂n,e(θ)

]
t

∥∥∥−
∥∥∥
[
M̂n,e(θ)

]
s

∥∥∥
)2r−1

]) 1
2

} 1
r

≤ c(r, ‖Γ‖)
n

sup
0≤τ≤T

Ê
1
r [〈µn

τ , 1〉r]
{
| exp {(t− s)`(θ)} − 1|2r(|θ|α ∨ |θ|αr)s

+

(
1− exp

{
−4r(t− s)

∫

Sd1

|θ′z|αΓ(dz)

}) 1
2

[(|θ|α ∨ |θ|αr)(t− s)]
1
2





1
r

≤ c(r, α, ‖Γ‖)
n

sup
0≤τ≤T

Ê
1
r [〈µn

τ , 1〉r] {(|θ|α ∨ |θ|αr)(|θ|α| ln |θ||+ 1)(t− s)} 1
r . (29)

Furthermore, using the last two claims of Proposition 2 and (19), we find that the branching part
of ûn

t (θ) satisfies

Ê
1
r

[∣∣∣ûn,b
t (θ)− ûn,b

s (θ)
∣∣∣
2r

]

≤ c(r)

n

{
| exp {(t− s)`(θ)} − 1|2r

·

Ê




∣∣∣∣∣∣

bs/εc∑

k=1

exp

{
2(kε− s)

∫

Sd1

|θ′z|αΓ(dz)

}
〈
µn

kε−, ζε
k

〉
∣∣∣∣∣∣

r


+ nrÊ




∣∣∣∣∣∣

bs/εc∑

k=1

exp

{
2(kε− s)

∫

Sd1

|θ′z|αΓ(dz)

}
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·
(∥∥∥

[
M̂n(θ)

]
kε

∥∥∥− ÊU
[∥∥∥

[
M̂n(θ)

]
kε

∥∥∥
])∣∣∣

r])

+ exp

{
−2rt

∫

Sd1

|θ′z|αΓ(dz)

}

·

Ê




∣∣∣∣∣∣

bt/εc∑

k=bs/εc+1

exp

{
2kε

∫

Sd1

|θ′z|αΓ(dz)

}
〈
µn

kε−, ζε
k

〉
∣∣∣∣∣∣

r


+nrÊ




∣∣∣∣∣∣

bt/εc∑

k=bs/εc+1

exp

{
2kε

∫

Sd1

|θ′z|αΓ(dz)

}

·
(∥∥∥

[
M̂n(θ)

]
kε

∥∥∥− ÊU
[∥∥∥

[
M̂n(θ)

]
kε

∥∥∥
])∣∣∣

r])} 1
r

≤ c(r)(‖h′h‖∞ ∨ 1)
r
2

n

{
| exp {(t− s)`(θ)} − 1|2r

·

Ê




∣∣∣∣∣∣

bs/εc∑

k=1

〈
µn

kε−, ζε
k

〉
∣∣∣∣∣∣

r
 + ε

1−r
2 sup

0≤τ≤T
Ê [〈µn

τ , 1〉r]



+Ê




∣∣∣∣∣∣∣

b t
εc∑

k=bs/εc+1

〈
µn

kε−, ζε
k

〉
∣∣∣∣∣∣∣

r
 + ε

1
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) r
2

sup
0≤τ≤T

Ê [〈µn
τ , 1〉r]





1
r

. (30)

Using Jensen’s inequality applied to normalized sums and Lemma 3, we find from (30) that

Ê
1
r

[∣∣∣ûn,b
t (θ)− ûn,b

s (θ)
∣∣∣
2r

]

≤
c(r)(‖h′h‖∞ ∨ 1)

r
2 sup

0≤τ≤T
Ê

1
r [〈µn

τ , 1〉r]
n

{
| exp {(t− s)`(θ)} − 1|2r

(
ε

r
2

(⌊s

ε

⌋)r−1

+ε
1−r
2

)
+ε

r
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) r−1

+ ε
1
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) r
2

} 1
r

≤
c(r, α, ‖Γ‖)(‖h′h‖∞ ∨ 1)

r
2 sup

0≤τ≤T
Ê

1
r [〈µn

τ , 1〉r]

ε
1
2 n


 ε

1
2r (1 ∧ [|θ|α| ln |θ||(t− s)])2

+ε

(⌊
t

ε

⌋
−

⌊s

ε

⌋) r−1
r

+ ε
r+1
2r

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
2

]
. (31)

Piecing together (29), (31) and Lemma 9, one has that

Ê
1
r

[|ûn
t (θ)− ûn

s (θ)|2r] ≤ c(r, Ξ, α, ‖Γ‖)(‖h′h‖∞ ∨ 1)
3r
2

ε
1
2 n

[
ε

1
2r

(
|θ|αr ∨ |θ|α(r+2)

r

)
(t− s)

1
r

+ε

(⌊
t

ε

⌋
−

⌊s

ε

⌋) r−1
r

+ ε
r+1
2r

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
2

]
. (32)
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Then, using Minkowski’s integral inequality and (32), we find that

Ê
1
2r

[
‖ûn

t − ûn
s‖2r

L2(γ)

]
≤

(∫

Rd1

Ê
1
r

[|ûn
t (θ)− ûn

s (θ)|2r] γ(dθ)

) 1
2

≤ c(r, Ξ, d1, α, ‖Γ‖, ‖h′h‖∞)

ε
1
4 n

1
2

[
ε

1
4r (t− s)

1
2r + ε

1
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) r−1
2r

+ε
r+1
4r

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
4

]
. (33)

Moreover, we find from (33) that

sup
0≤τ≤T

Ê
1
2r

[
‖ûn

τ ‖2r
L2(γ)

]
≤ c(r, Ξ, d1, α, ‖Γ‖, ‖h′h‖∞)

ε
r−1
4r n

1
2

. (34)

(b) Estimation of A2.

In the sequel, we use ∗ to denote the convolution of functions. By our assumption that
h ∈ S(Rd1), one finds that %ε

k ∈ S(Rd1) for k ∈ N. We define the function

ψτ (θ)
.
= exp {`(θ)τ} , ∀θ ∈ Rd1 , τ ∈ R

and the operators

Akf
.
= (1 + Bk) f, Bkf

.
= %̂ε

k ∗ f, %̂ε
k(θ)

.
=

∫

Rd1

e−θ(x)%ε
k(x)dx, k ∈ N,

T
bt/εc
t,s f

.
= ψt−b t

εcεAb t
εc




bt/εc−1∏

k=ds/εe+1

{ψεAk}

 ψεBd s

εef,

Tt,sf
.
= ψt−b t

εcεAb t
εc




bt/εc−1∏

k=ds/εe+1

{ψεAk}

 ψ(d s

εe+1)ε−sf (35)

for f ∈ L2(Rd1 ; γ(dθ)), with the interpretations that the products go from right to left as one
goes from the bottom. We find by (20) and (22)-(25) that

v̂n
t (θ) =

∫ t

0

(`(θ) + (DŶ ε
s ∗ v̂n

s−)(θ))ds +

∫ t

0

(DŶ ε
s ∗ ûn

s−)(θ)ds.

Hence, v̂n
t (θ) is given by

v̂n
t (θ) =

bt/εc∑

k=1

T
bt/εc
t,kε ûn

kε− (θ) . (36)

Moreover, we find for 0 ≤ s < t ≤ T that

|v̂n
t (θ)− v̂n

s (θ)| ≤ |[Tt,s − ψt−s] v̂
n
s (θ)|+ |[ψt−s − 1] v̂n

s (θ)|

+

∣∣∣∣∣∣

bt/εc∑

k=bs/εc+1

T
bt/εc
t,kε ûn

kε− (θ)

∣∣∣∣∣∣
. (37)
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Yet, recalling (35) and defining

T̃ l
t,sf(θ) = ψt−lεBlψεT(l−1)ε,sf(θ), ∀l =

⌈s

ε

⌉
+ 1, ...,

⌊
t

ε

⌋
, (38)

we see that for any θ ∈ Rd1 , 0 ≤ s ≤ T

[Tt,s − ψt−s] v̂
n
s (θ) =

bt/εc∑

l=ds/εe+1

T̃ l
t,sv̂

n
s (θ)

and for any θ ∈ Rd1 , 0 ≤ u < v ≤ T

bv/εc∑

k=bu/εc+1

T
bv/εc
v,kε ûn

kε− (θ)

are sums of respectively forward martingale and backward martingale differences. Thus, we find
that

Ê
[|[Tt,s − ψt−s] v̂

n
s (θ)|2] =

bt/εc∑

l=bs/εc+1

Ê

[∣∣∣T̃ l
t,sv̂

n
s (θ)

∣∣∣
2
]

, (39)

Ê




∣∣∣∣∣∣

bv/εc∑

k=bu/εc+1

T
bv/εc
v,kε ûn

kε− (θ)

∣∣∣∣∣∣

2
 =

bv/εc∑

k=bu/εc+1

Ê

[∣∣∣T bv/εc
v,kε ûn

kε− (θ)
∣∣∣
2
]

. (40)

For $ ∈ Rd1 , we define

m$(·) .
= (1 + | · |2)− γ

2 (1 + | ·+$|2) γ
2 .

Then, by Minkowski’s integral inequality, classical multiplier theorem [see Stein (1970, Theorem
3.2)], Jensen’s inequality, independence, the assumption on h, (11) and Lemma 3, we find that

Ê
[
‖Blf‖2

L2(γ)

]
= Ê

[∫

Rd1

∣∣∣∣
∫

Rd1

%̂ε
l ($)f(θ −$)(1 + |θ|2) γ

2 d$

∣∣∣∣
2

dθ

]

≤ Ê

[(∫

Rd1

|%̂ε
l ($)| · ‖f · (1 + | ·+$|2) γ

2 ‖2d$

)2
]

= Ê

[(∫

Rd1

|%̂ε
l ($)| · ‖m$ · f · (1 + | · |2) γ

2 ‖2d$

)2
]

≤ c(d1)Ê

[(∫

Rd1

|%̂ε
l ($)| (1 + |$|2)[

d1
2

]+1− γ
2 d$

)2

‖f‖2
L2(γ)

]

≤ c(d1)Ê

[∥∥∥(1 + | · |2) d1+2−2γ
2 %̂ε

l

∥∥∥
2

2
· ‖f‖2

L2(γ)

]

≤ c(d1)Ê
[|||%ε

l |||2[d1−2γ]+2

]
Ê

[
‖f‖2

L2(γ)

]

≤ c(d1, 〈〈h〉〉[d1−2γ]+2)εÊ
[
‖f‖2

L2(γ)

]
(41)
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for any f ∈ L2
(
Ω̂,F tl−, L2(Rd1 ; γ(dθ))

)
, where ||| · |||[d1−2γ]+2 denotes the standard Sobolev

(W
[d1−2γ]+2
2 -) norm. Moreover, using (38), the fact that |ψε(θ)| ≤ 1, independence, (41) and

recursion, we find that

max
b s

εc+1≤l≤b t
εc

Ê
1
2

[
‖T̃ l

t,sv̂
n
s ‖2

L2(γ)

]

≤ max
b s

εc+1≤l≤b t
εc

{
c(d1, 〈〈h〉〉[d1−2γ]+2)εÊ

[
‖T(l−1)ε,sv̂

n
s ‖2

L2(γ)

]} 1
2

= max
b s

εc+1≤l≤b t
εc

{
c(d1, 〈〈h〉〉[d1−2γ]+2)ε

∫

Rd1

Ê
[∣∣ψεT(l−2)ε,sv̂

n
s (θ)

∣∣2

+
∣∣Bl−1ψεT(l−2)ε,sv̂

n
s (θ)

∣∣2
]
γ(dθ)

} 1
2

≤ max
b s

εc+1≤l≤b t
εc

{
c(d1, 〈〈h〉〉[d1−2γ]+2)ε

(
1 + c(d1, 〈〈h〉〉[d1−2γ]+2)ε

)
Ê

[
‖T(l−2)ε,sv̂

n
s ‖2

L2(γ)

]} 1
2

≤ max
b s

εc+1≤l≤b t
εc

{
c(d1, 〈〈h〉〉[d1−2γ]+2)ε

(
1 + c(d1, 〈〈h〉〉[d1−2γ]+2)ε

)l−1
Ê

[
‖v̂n

s ‖2
L2(γ)

]} 1
2

≤ c(d1, 〈〈h〉〉[d1−2γ]+2)ε
1
2 Ê

1
2

[
‖v̂n

s ‖2
L2(γ)

]
. (42)

Now, in a similar manner to (42), we find from (34) with r = 2 and Jensen’s inequality that

max
bu

ε c+1≤k≤b v
εc

Ê
1
2

[∥∥∥∥T
b v

εc
v,kε ûn

kε−

∥∥∥∥
2

L2(γ)

]
≤ c(d1, 〈〈h〉〉[d1−2γ]+2)ε

1
2 Ê

1
2

[
‖ûn

s‖2
L2(γ)

]

≤ c(Ξ, d1, α, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)ε
3
8

n
1
2

. (43)

Hence, combining (40), (43) and (36), we find that

Ê
1
2




∥∥∥∥∥∥

bt/εc∑

k=bs/εc+1

T
bt/εc
t,kε ûn

kε−

∥∥∥∥∥∥

2

L2(γ)


 ≤ c(Ξ, d1, α, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)ε

3
8

n
1
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
2

, (44)

Ê
1
2

[
‖v̂n

t ‖2
L2(γ)

]
≤ c(Ξ, d1, α, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)

ε
1
8 n

1
2

. (45)

Replacing γ(dθ) with (|θ|α ln |θ|)2γ(dθ), noting that γ < −(d1/2 + 2α) by the assumption, and
repeating the above arguments, one finds that

Ê
1
2

[∫

Rd

(|θ|α ln |θ|)2|v̂n
s |2(θ)γ(dθ)

]
≤ c(Ξ, d1, α, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)

ε
1
8 n

1
2

. (46)

Now, it follows by (39), (42) and (45) that

Ê
1
2

[
‖ [Tt,s − ψt−s] v̂s‖2

L2(γ)

]
≤ c(Ξ, d1, α, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)ε

3
8

n
1
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
2

. (47)
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Finally, using the bound |ψt−s(θ)− 1|2 ≤ c(α, ‖Γ‖)(|θ|α ln |θ|)2|t − s|2, (37), (44), (46) and (47),
one finds that

Ê
1
2

[
‖v̂n

t − v̂n
s ‖2

L2(γ)

]
≤ c(Ξ, d1, α, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)

ε
1
8 n

1
2

[
(t− s) + ε

1
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
2

]
. (48)

(c) Estimation of A3.

Note that the solution χ̂n
t (θ) defined by (24) and (23) can be written as

χ̂n
t (θ) = ψt−b t

εcε
bt/εc∏

k=1

{Akψε} 〈µn
0 − µ0, e−θ〉

and

Ê
1
2

[|〈µn
0 − µ0, e−θ〉 |2

] ≤ 4

n
1
2

, ∀n ∈ N, θ ∈ Rd1 .

Then, one finds similarly to (48) that

Ê
1
2 [‖χ̂n

t − χ̂n
s‖2

L2(γ)] ≤
c(Ξ, d1, α, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)ε

1
2

n
1
2

[
(t− s) +

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
2

]
. (49)

Therefore, (12) follows from (26), (33) with r = 2, Jensen’s inequality, (48) and (49).

3.3. Proof of Corollary 5. Since α = 2, we find by (28) and (16) that

Ê
1
r

[
|ûn,e

t (θ)− ûn,e
s (θ)|2r

]

≤ c(r)

n
sup

0≤τ≤T
Ê

1
r [〈µn

τ , 1〉r]




(
exp

{
−(t− s)

∫

Sd1

|θ′z|2Γ(dz)

}
− 1

)2r

·
(∫ s

0

exp

{
−2(s− τ)

∫

Sd1

|θ′z|2Γ(dz)

}
d

(
τ

∫

Sd1

|θ′z|2Γ(dz)

))r

+

(∫ t

s

exp

{
−2(t− τ)

∫

Sd1

|θ′z|2Γ(dz)

}
d

(
τ

∫

Sd1

|θ′z|2Γ(dz)

))r} 1
r

≤ c(r)

n
sup

0≤τ≤T
Ê

1
r [〈µn

τ , 1〉r]
(

1− exp

{
−2(t− s)

∫

Sd1

|θ′z|2Γ(dz)

})

≤ c(r, ‖Γ‖)
n

sup
0≤τ≤T

Ê
1
r [〈µn

τ , 1〉r] (t− s)|θ|2. (50)

Replacing (29) with (50), we find similarly to (33) that

Ê
1
2r

[
‖ûn

t − ûn
s‖2r

L2(γ)

]
≤ c(r, Ξ, d1, ‖Γ‖, ‖h′h‖∞)

ε
1
4 n

1
2

[
ε

1
4r (t− s)

1
2

+ε
1
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) r−1
2r

+ ε
r+1
4r

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
4

]
.
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Letting r = 2, we then find that for any β > 1/4

Ê
[
‖ûn

t − ûn
s‖4

L2(γ)

]
≤ c(Ξ, d1, ‖Γ‖, ‖h′h‖∞)

εn2

[
ε

1
2 (t− s)2

+ε2

(⌊
t

ε

⌋
−

⌊s

ε

⌋)
+ ε

3
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋)]

≤ c(Ξ, d1, ‖Γ‖, ‖h′h‖∞)

εn2

[
ε

1
2 (t− s)2

+ε2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
2
+2β

+ ε
3
2

(⌊
t

ε

⌋
−

⌊s

ε

⌋) 1
2
+2β

]
.

Thus, by Lemma 10, we find that

Ê

[
sup

0≤s<t≤T
‖ûn

t − ûn
s‖2

L2(γ)

]
≤ Ê

1
2

[
sup

0≤s<t≤T
‖ûn

t − ûn
s‖4

L2(γ)

]
≤ c(β, Ξ, d1, ‖Γ‖, ‖h′h‖∞)

εβn
. (51)

Similarly, by (48), (49) and Lemma 10, we find that

Ê

[
sup

0≤s<t≤T
‖v̂n

t − v̂n
s ‖2

L2(γ)

]
≤ c(β, Ξ, d1, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)

εβn
(52)

and

Ê

[
sup

0≤s<t≤T
‖χ̂n

t − χ̂n
s‖2

L2(γ)

]
≤ c(β, Ξ, d1, ‖Γ‖, 〈〈h〉〉[d1−2γ]+2)

εβn
. (53)

Therefore, (13) follows from (26), (51), (52) and (53).

4. Appendix: Proofs of Lemma 1, Proposition 2 and Lemma 3. In the current
section we give the proofs of Lemma 1, Proposition 2 and Lemma 3. We realize that similar
results are well-known in a variety of settings and only give them for the sake of completeness.

Proof of Lemma 1. For ϕ ∈ T , we have that

ϕ(Xt)− ϕ(X0) =

∫ t

0

Lϕ(Xs)ds +Mt(ϕ),

where Mt(ϕ) is an X t-martingale. Then,

ϕ(Xt)η
−1
t = ϕ(X0) +

∫ t

0

Lϕ(Xs)η
−1
s ds +

∫ t

0

η−1
s−dMs(ϕ)

+

bt/εc∑

k=1

ϕ(Xtk)η
−1
tk

[
1− exp

{
−(Ytk − Ytk−1

)′h(Xtk) +
(tk − tk−1)(h

′h)(Xtk)

2

}]
.

By the independence of X and Y under P , we find that Mt(ϕ) is also an X t ∨YT -martingale so

E
{∫ t

0
η−1

s−dMs(ϕ)|Y t
}

= 0. Hence,

〈µt ,ϕ〉 = 〈µ0, ϕ〉+

∫ t

0

〈µs,Lϕ〉 ds

+

bt/εc∑

k=1

〈
µtk , ϕ

[
1− exp

{
−(Ytk − Ytk−1

)′h +
(tk − tk−1)h

′h
2

}]〉
. (54)
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On the other hand, we obtain from the definition of µt and the stochastic continuity of X that
for any continuous bounded function ϕ on Rd1 , and k ≥ 1

〈
µtk , ϕ

[
1− exp

{
−(Ytk − Ytk−1

)′h +
(tk − tk−1)h

′h
2

}]〉

= EX

{
ϕ(Xtk)

[
1− exp

{
−(Ytk − Ytk−1

)′h(Xtk) +
(tk − tk−1)(h

′h)(Xtk)

2

}]

·
k∏

l=1

exp

{
(Ytl − Ytl−1

)′h(Xtl)−
(tl − tl−1)(h

′h)(Xtl)

2

}}

= EX

{
ϕ(Xtk)

[
exp

{
(Ytk − Ytk−1

)′h(Xtk)−
(tk − tk−1)(h

′h)(Xtk)

2

}
− 1

]

·
k−1∏

l=1

exp

{
(Ytl − Ytl−1

)′h(Xtl)−
(tl − tl−1)(h

′h)(Xtl)

2

}}

= lim
t↑tk

〈
µt, ϕ

[
exp

{
(Ytk − Ytk−1

)′h− (tk − tk−1)h
′h

2

}
− 1

]〉

=

〈
µtk−, ϕ

[
exp

{
(Ytk − Ytk−1

)′h− (tk − tk−1)h
′h

2

}
− 1

]〉
, (55)

where EX is expectation taken only with respect to X. Further, (55) holds for any ϕ ∈ Bb(Rd1)
by the monotone class theorem. Substituting (55) into (54), we get (4).

The uniqueness of µt can be proved by the action of L on the trigonometric polynomials and
induction. In fact, suppose that {µt, t ≥ 0} and {νt, t ≥ 0} satisfy (4), and µt = νt for t ≤ tk for
some k ≥ 0. Note that

Le−θ =




−

(∫
Sd1
|θ′z|α(1 + i sign (θ′z) tan(απ

2
))Γ(dz)

)
e−θ for α 6= 1,

−
(∫

Sd1
|θ′z|(1− 2i

π
sign (θ′z) ln |θ′z|)Γ(dz)

)
e−θ for α = 1.

From (4), one finds that for any θ ∈ Rd1 , tk ≤ t < tk+1

〈µt, e−θ〉

=




〈µtk , e−θ〉 exp

{
−(t− tk)

∫
Sd1
|θ′z|α(1 + i sign (θ′z) tan(απ

2
))Γ(dz)

}
for α 6= 1,

〈µtk , e−θ〉 exp
{
−(t− tk)

∫
Sd1
|θ′z|(1− 2i

π
sign (θ′z) ln |θ′z|)Γ(dz)

}
for α = 1

= 〈νt, e−θ〉.

Since the set of trigonometric polynomials is measure-determining, µt = νt, tk ≤ t < tk+1. Hence,
by (4), we find that µtk+1

= νtk+1
. Therefore, the uniqueness of µt follows by induction.

Proof of Lemma 3. Let W be a standard Rd2-valued Brownian motion on (Ω̂, F̂ , P̂ ). We fix
an x ∈ Rd1 and define

Zx
t

.
= exp

{
(Wt)

′h(x)− t(h′h)(x)

2

}
.
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Then, Ê [|%ε
k(x)|r] = Ê [|Zx

ε − 1|r] for any k ∈ N. By Burkholder’s, Minkowski’s integral and
Jensen’s inequalities we find that for any 0 ≤ t ≤ ε

Ê [|Zx
t − 1|r] ≤ c(r)‖h′h‖

r
2∞Ê

[(∫ t

0

(Zx
s )2ds

) r
2

]

≤ c(r)‖h′h‖
r
2∞

{
Ê

[(∫ t

0

(Zx
s − 1)2ds

) r
2

]
+ ε

r
2

}

≤ c(r)‖h′h‖
r
2∞

{(∫ t

0

(
Ê [|Zx

s − 1|r]
) 2

r
ds

) r
2

+ ε
r
2

}

≤ c(r)‖h′h‖
r
2∞

{
ε

r
2
−1

∫ t

0

Ê [|Zx
s − 1|r] ds + ε

r
2

}
,

where we have assumed without loss of generality that r ≥ 2 above. Applying Gronwall’s in-
equality, one then discovers that

sup
0≤t≤ε

Ê [|Zx
t − 1|r] ≤ c(r)‖h′h‖

r
2∞ε

r
2

and the lemma follows.

Proof of Proposition 2. To ease the notation in the sequel, we let ξk = ξε
k. For ϕ ∈ T , we

define

Mn
t (ϕ)

.
=

1

n

bt/εc∑

k=0

‖µn
tk
‖∑

i=1

(
ϕ(X i,n

tk+1∧t)− ϕ(X i,n
tk

)−
∫ tk+1∧t

tk

Lϕ(X i,n
u )du

)

+
1

n

bt/εc∑

k=1

‖µn
tk−‖∑
i=1

〈
δXi,n

tk−
, ϕ

〉 [
sign

(
ξk(X

i,n
tk−)

)
1{U i,k∈[0,|ξk(Xi,n

tk−)|)} − ξk(X
i,n
tk−)

]
. (56)

Then, we find from our algorithm and (1) that (6) holds. Recalling that the {U i,k} are independent
and compensating the square of the jumps in the second term of (56), we find that {Mn

t (ϕ)}t≥0

is a cádlág {Gt}t≥0-martingale satisfying (7).
Now, turning to bounding the difference between the quadratic variation [Mn(ϕ)]t and the

expected quadratic variation ÊU [Mn(ϕ)]t, we define

Ai,k .
=

1

n

〈
δXi,n

tk−
, ϕ

〉 [
sign

(
ξk(X

i,n
tk−)

)
1{U i,k∈[0,|ξk(Xi,n

tk−)|)} − ξk(X
i,n
tk−)

]
.

Letting {fk}∞k=1 ⊂ R, recognizing the martingale transform, and using Burkholder’s and Jensen’s
inequalities we bound

Ê




∣∣∣∣∣∣

bt/εc∑

k=bs/εc+1

fk

(
[Mn(ϕ)]kε − ÊU {[Mn(ϕ)]kε}

)
∣∣∣∣∣∣

r
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= Ê




∣∣∣∣∣∣∣

bt/εc∑

k=bs/εc+1

fk






‖µn

tk−‖∑
i=1

Ai,k




2

− ÊU



‖µn

tk−‖∑
i=1

Ai,k




2


∣∣∣∣∣∣∣

r


≤ c(r)Ê




∣∣∣∣∣∣∣∣

bt/εc∑

k=bs/εc+1

f 2
k






‖µn

tk−‖∑
i=1

Ai,k




2

− ÊU



‖µn

tk−‖∑
i=1

Ai,k




2


2
∣∣∣∣∣∣∣∣

r
2




≤ c(r)




bt/εc∑

k=bs/εc+1

f 2
k




r
2
−1 bt/εc∑

k=bs/εc+1

f 2
k Ê




∣∣∣∣∣∣∣



‖µn

tk−‖∑
i=1

Ai,k




2

− ÊU



‖µn

tk−‖∑
i=1

Ai,k




2∣∣∣∣∣∣∣

r
 . (57)

However, defining the filtrations
{Fm

k,+

}∞
m=1

and
{Fm

k,−
}∞

m=1
via

Fm
k,+

.
= Gtk− ∨ σ

{
U i,k, i ≤ m

}
, Fm

k,−
.
= Gtk− ∨ σ

{
U i,k, i ≥ m

}
,

we find that

m →
(

m∑
i=1

Ai,k

)2

− ÊU

(
m∑

i=1

Ai,k

)2

is an
{Fm

k,+

}∞
m=1

-martingale and m → Ai,k
∑i−1

j=m Aj,k is a backward
{Fm

k,−
}∞

m=1
-martingale for

each i. This means we can again apply Burkholder’s, Jensen’s and 2ab ≤ a2 + b2 inequalities and
uses the independence of {U i,k} to find that

Ê




∣∣∣∣∣∣∣



‖µn

tk−‖∑
i=1

Ai,k




2

− ÊU



‖µn

tk−‖∑
i=1

Ai,k




2∣∣∣∣∣∣∣

r∣∣∣∣∣∣∣
Gtk−




≤ c(r)
∥∥µn

tk−
∥∥ r

2
−1

‖µn
tk−‖∑
i=1

Ê

[∣∣∣
(
Ai,k

)2 − ÊU
[(

Ai,k
)2

]∣∣∣
r

+

∣∣∣∣∣2A
i,k

i−1∑
j=1

Aj,k

∣∣∣∣∣

r∣∣∣∣∣G
tk−

]

≤ c(r)
∥∥µn

tk−
∥∥r−2

‖µn
tk−‖∑
i=1

{
Ê

[∣∣∣
(
Ai,k

)2 − ÊU
[(

Ai,k
)2

]∣∣∣
r∣∣∣Gtk−

]
+

i−1∑
j=1

Ê
[∣∣Ai,kAj,k

∣∣r∣∣Gtk−]
}

≤ c(r)
∥∥µn

tk−
∥∥r−2

‖µn
tk−‖∑
i=1

{
iÊU

[∣∣∣
(
Ai,k

)2 − ÊU
[(

Ai,k
)2

]∣∣∣
r]

+ (i− 1)
(
ÊU

[(
Ai,k

)2
])r

+
i−1∑
j=1

{
ÊU

[∣∣∣
(
Aj,k

)2 − ÊU
[(

Aj,k
)2

]∣∣∣
r]

+
(
ÊU

[(
Aj,k

)2
])r}}

≤ c(r)
∥∥µn

tk−
∥∥r−1

‖µn
tk−‖∑
i=1

{
ÊU

[∣∣∣
(
Ai,k

)2 − ÊU
[(

Ai,k
)2

]∣∣∣
r]

+
(
ÊU

[(
Ai,k

)2
])r}

P̂ − a.s. (58)
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Now, ‖µn
tk−‖ = n〈µn

tk−, 1〉 and it follows by direct calculation of ÊU [| (Ai,k
)2− ÊU [

(
Ai,k

)2
]|r] that

Ê




(
n

〈
µn

tk−, 1
〉)r−1

‖µn
tk−‖∑
i=1

∣∣∣
(
Ai,k

)2 − ÊU
[(

Ai,k
)2

]∣∣∣
r




= Ê

[
1

nr

〈
µn

tk−, 1
〉r−1

〈
µn

tk−, |ϕ|2r
{|1− 3|ξk|+ 2ξ2

k|r |ξk|
+ |2ξ2

k − |ξk||r (1− |ξk|)
}

〉]
.

Next, conditioning on σ
{
µn

tk−
}
, using the independence of the increments of Y and Lemma 3, we

find that

Ê




(
n

〈
µn

tk−, 1
〉)r−1

‖µn
tk−‖∑
i=1

∣∣∣
(
Ai,k

)2 − ÊU
[(

Ai,k
)2

]∣∣∣
r




≤ c‖h′h‖
1
2∞ε

1
2

nr
Ê

[〈
µn

tk−, 1
〉r] ||ϕ||2r

∞. (59)

By Lemma 3 and the fact that {ÊU [(Ai,k)2]}r = (|ξk| − ξ2
k)

rn−2rϕ2r(X i,n
tk−), we find that

Ê




(
n

〈
µn

tk−, 1
〉)r−1

‖µn
tk−‖∑
i=1

{
ÊU

[(
Ai,k

)2
]}r


 ≤ c(r)‖h′h‖

r
2∞ε

r
2

nr
Ê

[〈
µn

tk−, 1
〉r] ||ϕ||2r

∞. (60)

Then, substituting (59) and (60) into (58) and (57), we find that

Ê




∣∣∣∣∣∣

bt/εc∑

k=bs/εc+1

fk

(
[Mn(ϕ)]kε − ÊU {[Mn(ϕ)]kε}

)
∣∣∣∣∣∣

r


≤ c(r)(‖h′h‖∞ ∨ 1)
r
2




bt/εc∑

k=bs/εc+1

f 2
k




r
2

ε
1
2

nr

(
sup

0≤τ≤T
Ê [〈µn

τ , 1〉r]
)
||ϕ||2r

∞

for some constant c(r) > 0 independent of d1, d2, ε, n, t, s, ϕ.

Acknowledgment. The authors acknowledge the support and sponsorship of NSERC, PIMS,
Lockheed Martin Naval Electronics and Surveillance Systems, Lockheed Martin Canada and
Acoustic Positioning Research Inc., through a MITACS centre of excellence entitled “Prediction
in Interacting Systems”. The authors also gratefully acknowledge the very helpful suggestions
and comments of an anonymous referee, an associate editor and the chief editor, which helped
improve the presentation of this paper.

REFERENCES

Ballantyne D.J., Chan H.Y. and Kouritzin M.A. (2000). A novel branching particle method for
tracking. Signal and Data Processing of Small Targets 2000. Proceedings of SPIE 4048 277-287.

25
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