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> Media O, and O; are considered homogeneous, and the
membrane I' is a single interface. The electric potential U s
follows a Poisson's law, and the concentration of a v

molecule M is governed by a transport-diffusion equation.
> Model statement molecul

> Experiments #1 and #3, as well as a majority of electroporation experiments,
are based on the internalization of a given molecule by the cell. We should not AU =0, M — dAM =0, 90—
restrict our study on the electrical properties of the cell, like existing models,
but also include a model of transport and diffusion of molecules. Heavy
molecules, such as DNA plasmids, are carried towards the cell by electro- 0.0,U¢ = 0.0,U°, deOy M® + o M°0,U® = d.0, M,
phoresis only, whereas smaller molecules can diffuse in both extra- and Cod; [U] + Su(t, [U)) [U] = 8,U¢, | Pult, [U]) [M] = 4.8, M°,
intracellular media.
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with the transmission conditions on the flux and discontinuities on I’

> Experiment #1, Escoffre et al [1] : propidium [KEEERNUEEE
iodide (PI) uptake by a cell submitted to 10 pulses
of 20 ms, 50 kV/m, 1 Hz. A dyssymetry in the PI
distribution can be seen, facing the anode (lower
part on the picture). PI internalization lasts for
several seconds after pulses.

. . .y _ with the following boundary and initial conditions
> Experiments #2 and #3 highlight two distinct dynamics of the cell recovery to

its initial state. The conducting state of the membrane lasts for micro- U(t,)oa = Unmp(t, ), M(t,-)]go = M,
seconds, while its permeable state lasts for several minutes. Thus we cannot U(0,-) = U,. M(0,) = M"1p,.
characterize cell permeability by its membrane conductivity. The pheno-
menon would be the following:

> The non-linear terms S, and P,, denote respectively the surface conduc-

» Experiment #2, Benz et al. [2] : voltage dur11_1_g the | 7 i “7 tivity and the permeability of the membrane. We note (S,,S,,S,) and (P,,P.P,)
discharge of a planar membrane previsouly | - ; . the conductivities and permeabilities of the membrane at rest, completely
charged with electric fields of various magni- | “I"$\JT" 3010 1./ Membrane at rest porous, and completely altered.
tudes. After only 5 us, the membrane conduc- | ~ '\\ : i
tivity stabilizes at a value close to its original | = Sm(t,s) = So+ Xi(t,s)S1 + Xo(t, )59, VE>0,s €T,
state. = —— Pu(t,s) = Po+ Xi(t, s) Py + Xo(t,s) Py, Vt>0,s€T.

- 2./ During the pulse : conductive
pores creation. Lipids are > X; and X, describe respectively the membrane porosity and permeability
chemically altered. degrees (0<X;,X,<1). X; follows an electrophysiology sliding-door model and
> Experiment #3, Silve et al. : in vitro cells are sub- [ 10 1s triggered by a voltage threshold, represented by a smoothed Heaviside
mitted to a single pulse of 100 ps, 150 kV/m. A g 80 I function g;:
cytotoxic agent (bleomycin) is injected after the |& . T 3./ Few microseconds after the PUISE:  smmmosoonmmccocosceossossmmsiossessmmssssssssessmmmmeccccones pi1([U]) — X
pulses. We notice clearly an effect of bleomycin | ‘2‘2 i I pores now closed, 0, X, = =2 L A () — 1 + tanh(kq (|A| — Vin))
even if it is injected ten minutes after thepulse | " | _ |1 W W permeable membrane, S ot Xt — 0.9 :TB(O with f1(A) = 5 .
application. i o e of o A

X, follows a reaction-diffusion equation, with different dynamics of
permeabilization and recovery (7, pe;m~5HSs, but 7,,~1h). X, grows as soon as
a porosity threshold is passed.

4./ Diffusion of altered lipids,
membrane reconstruction

by exocytosis. ( X)) — X
> Numerical methods T A0
,perm
X1)—X
< 0y Xo —di, ArXe = 62( 7_1) 2 if 52 — X9 <0,
2, res
» Discretization of electric potential (Xa(t = 0,s) = X, 1+ tanh(ka( A — X1a0)
and molecule transport equations Ba(A) = 5 —
> A 3D parallel code has been written to simulate our permeabilization model. It is based on a second order finite diffe- ¥ Discretization of the Laplace-BeItrami
rences method proposed by Cisternino and Weynans [3], whose main feature is to add unknowns at the intersection Operator (L BO) on the interface

points of a cartesian grid and the interface I. Two examples of Laplacian and interface fluxes discretization stencils are
given below in 2D. Those special stencils allow a second order convergence for the linear problem (constant S,), and a

: > The equation on X, includes diffusion on the surface I. We
first order convergence for the non-linear problem.

studied the convergence of a finite volumes based method [4]
to discretize the LBO, with the intersection points previously
used (mesh A), as well as a more regular mesh of a sphere(B).
Since the results are not staisfying and the cell shapes
usually simple, we use directly the analytical expression of

« Example of flux discretization at interface point P,
located left from ij:

0,U(P) = VU(P) - v(P) = 3,U(P)v,(P) + 8,U(P)v,(P).

The x-derivative is discretized with the red points, the LBO thanks to a parametrization in (Q,CP) of I': A Sphere meshes used to select a LBO discretization method.
whereas the y-derivative i1s approximated by a linear : : : :
. . : . g 2 2
combination of the derivatives at points ij and i+1j. If the y- go0 = [0aT(0,0)]55 G = 10,1(0,0)[5,  gap := (Oal'(8, ), O,1'(0, ). The LBO 1s then discretized using a
. . : : standard second order centered
derivative at point ij involves another interface point, the goo Go g’ gl? : :
B . G = » = det(G) Gl = finite differences method on a
stencil is shifted (dotted line). ' 9 ) ' bp qop | . 1
9op Gy g9 cartesian grid in (6,¢p) (mesh C). A

Laplacian discretization stencil near the interface. p

1 o 0y ) ( T (B o )} correction must be done at the poles
Arf(0,¢) = q] [89 ( 91 (g %f +9 pr) +0 9 (g % +9 8‘pf) - where the metric Gis not defined.

> Numerical schemes : our very irregular mesh induces numerical insta- ( (Au)*t! =0, .
bilities for the transport-diffusion equation on M. Thus, a splitting of - sl « Convergence (or not) in L* norm of the 0-52%
. . . Te(Opu®)" ™ — go(Opu)" T =0, .
these two steps is performed. A fixed point method i1s performed for the < 1 W finite volumes methods on meshes A and
diffusion step to capture accuratly the non-linearity of P_,,. % _aon n+l eyntl _ % n *o,® B and finite differences method on mesh 0.24%
Su" | U] ge(Opu’) Ul 0.1 . .
L\ ot ot 5 —* * * ' v C. The relative error is measured by com-
.1 1 S 001 ~ puting the curvature H=A;I of the sphere. 0.16%
(1 1 —MF —d(AM)FT = — M*, g | \ o
M= MY+ (V- (uM V)", ot ot g 100 e =y Spatial repartition of the relative error
< O, M* =01 Vu"-vr>0o0nT, 3 de(al/,ue)k-i_l - dc(au/ic)k-'_l — MeM;’ (Cuuc)”, Y e M when computing the curvature of an e
M* =0 Vu" v <0onl P, (Me*+E — MOF) = do (O pe)* T, e L T .| ellipsoid. The error is maximal at the N
\ - ' : k+1 _ ark —6 T e oles, where sin6=0. p ©
| while ||A ME|| @ > 1075 = — — - P
Mesh points

» Simulations

« Electric field and conductivity of the
cell membrane submitted to a pulse of

— 100 ps, 40 kV/m.

|E| [kV/m] Sm [S/cm2]

T — ' = =19

B X S = 2D Simulation of PI trans-

":—f—'—-"' E = 2D Simulation of PI transport around port (without lipid diffu-

el - E and inside a cell similarly shaped as the sion) for a cell submitted

—— £ - cell shown in experiment #1, submitted to the same pulse protocol

E to the same pulse protocol as the as used by Vernier et al. in

E experiment. The color scales are not the [5] : five pulses of 100 ps,

= same since there is a important gap 500 kV/m, 4Hz. The indi-

between the values in the two sub- cated times start at the

domains. The lipid diffusion is not taken end of the last pulse. Same

Time : 6.00 us into account in this result. > color scale as to the left. p

> Influence of pulse frequency > References

on global permeabilization > When the duration between two electric pulses is small, the lipids don't have the time to >[1] JM. Escoffre, T. Portet, C. Favard, J. Teissié, D. Dean, and M. Rols. Electromediated
spread evenly on the membrane surface. When the next pulses occur, the same region is formation of DNA complexes with cell membranes and its consequences for gene

. .- . . . deli . BBA - Bi b , 1808(6), 2011.
porated, and the total quantity of altered lipids is higher when the pulse frequency is lower. svery lomembranes, 1808(6)
> [2] R. Benz, F. Beckers, and U. Zimmermann. Reversible electrical breakdown of lipid

b (0™ This result corroborate those recently obtained by Silve et al. [6], highlighting this "desensiti- bilayer membranes: a charge pulse relaxation study, J. Memb. Biol, 48(2), 1979,

25 zation" effect of hlgh-frequency pulses. > [3] M. Cisternino and L. Weynans. A parallel second order cartesian method for elliptic
' interface problems. Commun. Comput. Phys. 12, 2012
2

0©

e

» [4] G. Xu. Discrete Laplace—Beltrami operators and their convergence. Comput. Aided
100% Geom. Des., 21(8), 2004.
1,5
& 8 »[5] T. Vernier, Y. Sun, L. Marcu, S. Salemi, C.M. Craft, and M.A. Gundersen. Calcium
After pulse 1 Before pulse 2 After pulse 2 After pulse § 2s after pulse 10 = % 9, —— 1Hz bursts induced by nanosecond electric pulses. Biochem. Biophys. Res. Comm., 310
X 5%
- 6 9 ? E (2), 2003.
0,5 i:;, f é ? -g . ¢— 10Hz > [6] A. Silve, A. Giumera Brunet, A. Ivorra, and L.M. Mir. Comparison of the effects of the
| — C 50% repetition rate between microsecond and nanosecond pulses: Electropermea-
0 = <3 e e | O+ 100H
'% 4 % . o ©® g z bilisation-induced electro-desensitization? Submitted, 2014.
£ § l o ¢ ¢ g 25% S e | L @ 1000 Hz
- o - -
&2 T © > More information
0%
.- ! : > M. Leguébe, A. Silve, C. Poignard and L.M. Mir. Conducting and permeable states of
Permeabilization Pm of a cell submitted to 10 PUISGS of 40kV/m A 1 2 3 4 5 6 7 8 9 10 30 60 _ 90 120 150 cell membrane sbmitted to high voltage pulses. Mathematical and numerical
during 10 ps. The top line corresponds to a time lapse of 1s Pulse Time (s) studies based on experiments. Submitted, 2014.
between pulses and 1ms for the bottom line. N . . . > O._ .Kav_ian, M. Le;guébe, C. Poignard, and L. Weynans. “Classical” electropermea-
A Averaged permeabilization degree P, after each pulse (left panel) and time evolution of the bilization modeling at the cell scale. J. Math. Biol., 68(1-2), 2014.
: : - : > M. Leqgueébe, C. Poignard, and L. Weynans. A second-order cartesian method for the
rnole_cul_e concentration M (right panel), relatively to the external concentration M’ for pulse simulation of eleotropermeabilization cell models, Research repost RR.8302, INRLA
application frequency from 1 to 1000 Hz. 2013.
: : . V4 _ Institut de cancérologie z 1 ita
This study has been carried out in the frame of "the Investments for the future” Programme IdEx Bordeaux CPU (ANR-10-IDEX-03-02). The authors have ﬂ(IT ’ @ - GUSTAVE Rousgy ./)4 iformatics 4 mathemaric U ﬂ(!eV €Sl t'e
. . Mathématiques de
been partly granted by the French national agency throughout the research projects INTCELL (2010—-BLAN-916—-04) and MEMOVE (2011-BS01-006-01). WS VILLEJUIF -www.igr.ir  Bordeaux zlaa— BORDEAUX

Karlsruhe Institute of Technology

This work was partly performed in the scope of the European Associated Laboratory EBAM.



