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Abstract. In this paper, we focus on the behaviour of periodic solutions to

a cell-scale electropermeabilization model previously proposed by Kavian et

al. [6]. Since clinical permeabilization protocols mostly submit cancer cells to
trains of periodic pulses, we investigate on parameters that modify significantly

the resulting permeabilization. Theoretical results of existence and uniqueness

of periodic solutions are presented, for two different models of membrane elec-
tric conductivity. Numerical simulations were performed to corroborate these

results and illustrate the asymptotic convergence to periodic solutions, as well
as the dependency on biological parameters such as the cell size and the extra-

cellular conductivity.

1. Introduction. Electropermeabilization or electroporation is a phenomenon that
occurs when a biological cell or a lipid vesicle is submitted to a high electric field.
If a sufficiently large potential difference is applied to the membrane, its structure
is altered and molecules that are usually not able to enter the cytoplasm can dif-
fuse inside the cell. Reversible electropermeabilization is already used to improve
delivery of drugs such as bleomycin in oncology [1, 4], and also to make the cell
permeable to very large molecules for gene transfer [11].

This paper is an extension of a previous modeling work [6] in which we proposed
a phenomenological approach to electropermeabilization, in comparison with the
previous most achieved models of Neu, Debruin and Krassowska [13, 3].

Experiments show that a single electric impulsion is often not sufficient to achieve
cell electropermeabilization, with a wide variety of pulses, from nanopulses to mil-
lipulses [12, 20, 19]. The electric field is therefore usually applied by trains of several
pulses, which can be considered as a periodic source. Here we focus theoretically and
numerically on the behaviour of solutions to our equations in this particular case
of sources. The objective of this paper is to show that the membrane conductivity
reaches a stable periodic state when submitted to a periodic voltage.

Generally, electroporation models at cell scale mainly focus on the evolution of
the transmembrane potential [3, 5, 10]. The relationship between the conductivity
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of the membrane and its actual degree of permeability may however be non-trivial.
We proposed a model [9] in which membrane permeabilization is triggered when a
porosity threshold is exceeded (see equations 4,8 and 9), corresponding to an activa-
tion conductivity. As the underlying mechanisms of lipids permeabilization are not
clearly determined at the biophysical level yet, we used the same phenomenological
modeling approach as for the membrane poration. It is also possible to link directly
the permeability to the electric potential as proposed in [7] (page 97, equation 4.7),
in particular for pulses of several milliseconds. Both permeability models give qual-
itative results that are in agreement with experiments, and calibration of these will
be forthcoming work. However, in both cases, studying the electric potential evo-
lution and the resulting conductivity is necessary to determine the resulting degree
of permeability of the whole cell.

When very intense electric pulses are clinically applied, healthy tissues in the
vicinity of the electrodes are completely damaged due to the high electric field.
Moreover, thermal effects induce cell destruction if pulses last for too long. It
is therefore important to determine pulse characteristics (voltage, duration) that
are sufficient to permeabilize the targeted tissue, minimizing at the same time the
caused damage. Considering that, we will focus on the amount of time needed for
the cell to reach a periodic conductive state, depending on which model is chosen
to describe the membrane conductivity.

We will show, in particular, that using a static model of conductivity results
in a high convergence speed of the solution to a periodic state. A first conclusion
should be that a few pulses are needed to reach it. However, results given by
a fully dynamical model infer that more pulses are required to actually achieve
electropermeabilization.

After recalling in the first section the model of the electric potential in a biological
cell, and especially across its membrane, we will justify the existence and uniqueness
of periodic solutions in the second section. In the final section, we will illustrate
how a cell at rest submitted to a periodic source reaches a periodic state. We will
validate these results with numerical simulations.

2. Statement of the model.

2.1. The electric potential in a biological cell. A biological cell is considered
as an homogeneous medium Oc, which is separated from an exterior bath Oe by
a phospholipidic membrane Γ (see fig. 1). Due to the high resistivity and the
thickness of the membrane, it is considered as a single surface interface between the
two domains.

Notation. • We denote by n the unit vector normal to the surface Γ (or curve
in R2), outwardly directed from Oc to Oe.

• Let f be a smooth function defined in a neighborhood of Γ. The values of f
on each side of Γ are defined by:

∀x ∈ Γ, f Γ±(x) := lim
τ→0±

u(x± τn(x)).

Then we denote the jump of f across the interface by:

[f(x)]Γ := f Γ+(x)− f Γ− .

The flux of f across the interface is defined by:

∀x ∈ Γ, ∂nf Γ±(x) = lim
τ→0±

∇f(x± τn(x)) · n(x).
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• We note PH1(Ω) the space of functions whose restrictions on each subdomain
belong to H1:

PH1(Ω) :=
{
f ∈ L2(Ω), f Oe

∈ H1(Oe), f Oc
∈ H1(Oc)

}
.

The capacity of the membrane electric material is denoted by Cm, and its surface
conductivity by Sm. Let σ be the conductivity of the medium, considered piecewise
constant:

σ =

{
σe in the bath Oe,
σc in the cytoplasm Oc.

(1)

∂Ω

(Oc, σc)

(Oe, σe)

(Γ, Sep, Cm)

n

Figure 1. Geometry of the problem. The whole domain Ω is
defined by Ω = Oe ∪ Oc.

The electric potential U in both intra- and extracellular domains follows Poisson’s
law:

∆U = 0 in Oe ∪ Oc, (2a)

U = g on ∂Ω, ∀ t > 0, (2b)

with the transmission conditions on the flux and the transmembrane potential across
the interface Γ:

[σ∂nU ]Γ = 0, (2c)

Cm∂t[U ]Γ + Iep = σc∂nU |Γ− , (2d)

where g represents the potential that is applied by external electrodes, and Iep is
the total current due to electropermeabilization. Equation (2c) describes the con-
tinuity of the current across the membrane, whereas equation (2d) is a Kirchhoff’s
law describing the evolution of the local transmembrane potential difference. The
discontinuity of the potential comes from the fact that we consider a membrane with
no thickness. An asymptotic expansion of Poisson’s law on a domain including the
membrane leads to (2d), as performed in [14, 16].

In the most achieved models of electroporation proposed by Neu, Krassowska
and De Bruin [13, 3], the current Iep is defined as the product of a pore density Nep

by the current flowing through a single pore iep. The pore current is defined by a
highly non-linear function of the transmembrane potential.

We proposed in our previous work [6] to define Iep as the product of the surface
conductivity of the membrane Sm by the transmembrane potential difference [U ]Γ,
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which can be seen as a linearization of the current of the model of Neu et al. The
transmission condition now holds :

Cm∂t[U ]Γ + Sm[U ]Γ = σc∂nU |Γ− . (3)

In order to take into account electropermeabilization, we write Sm as the sum of
the lipid conductivity at rest S0 and a non-linear surface conductivity Sep depending
on [U ]Γ:

Sm([U ]Γ) := S0 + Sep([U ]Γ). (4)

The next section introduces the different conductivity models we chose.

2.2. Models of membrane conductivity. Throughout this paper, we will fo-
cus on two models of membrane conductivity. We proposed these ad hoc models
in [6], with the thought of reducing the number of parameters to facilitate the in-
verse problem resolution. As the rise of the electric membrane conductivity has
not been clearly explained by experiments yet, we prefered to use a phenomeno-
logical approach, rather than performing an homogeneization of the description of
a nanoscale mechanism. The voltage threshold is kept, as it is highlighted by all
experiments and previous electroporation models.

• The first model is a static definition of conductivity, which has a sigmoid
profile:

∀λ ∈ R, Sep(λ) = S1β(λ), with β(λ) = (1 + tanh(kep(|λ| − Vth)))/2 (5)

where S1 is another conductivity constant, much larger than S0. kep defines
the speed of the switch between the rest state (Sm = S0) and the fully per-
meabilized state (Sm = S0 + S1). Vth designates the voltage threshold that
needs to be crossed to permeabilize the membrane.

We will refer to this model as the β-model.

Remark 1. The choice of the β function is not restricted to hyperbolic tangents.
We showed that in a more general way, this function must satisfy the following
conditions: 

β ∈ C(R),

λ 7→ β(λ) is even on R,
0 < S0 ≤ β(λ) ≤ 1,

β is non decreasing on [0,+∞),

lim
λ→+∞

β(λ) = 1.

It is in particular possible to consider another threshold criterion, such as an elec-
trostatic energy level, required to induce pore formation:

β(λ) = exp

(
−Eth

λ2

)
.

• The second conductivity definition is a dynamical model which will be called
X-model: for t > 0,

Sep(t, λ) = S1X(t, λ), with

 ∂tX([U(t)]Γ, t) =
β([U(t)]Γ)−X(t)

τep
,

X(t = 0) = X0 ∈ [0, 1].
(6)

where β is the same function as the β-model and τep is the characteristic
time constant of formation and resealing of pores. The X variable follows
an electrophysiology sliding-door model around the electropermeabilization
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threshold Vth. When the transmembrane potential difference [U ]Γ is high
enough, then β([U ]Γ) −X is positive and porosity rises with a dynamic τep.
On the contrary, when the pulse is cut or when the membrane conductivity
is high, β([U ]Γ) − X becomes negative, and the membrane tries to reseal
with the same characteristic time. Using this model makes the dynamic of
electropermeabilization intrisic to the cell and not dependent of the applied
pulse.

We showed in [6] that X verifies:{
X ∈ C([0,+∞)),
0 6 X(t, λ) 6 1 ∀t > 0.

(7)

In addition, we showed that there exists K > 0 such that:

∀t > 0, |λ1X(t, λ1)− λ2X(t, λ2)| 6 K|λ1 − λ2|. (8)

As the functions β and X take values that are between 0 and 1, they can be
considered as a description of the local degree of porosity of the membrane. β = 0
or X = 0 stands for a membrane at rest, whereas β or X = 1 corresponds to a
membrane that would have been completely porated, at the limit between reversible
and irreversible electroporation. Both these models fall in the hypothesis of theorem
10 in [6], so existence and uniqueness of solutions to problem (2) holds.

The main topic is now to know if given a periodic source term g, there exists a
unique solution that is also periodic. Also, starting from any initial condition, does
the solution converge to the periodic state, and at which speed ?

3. Existence and uniqueness of periodic solutions.

Notation. For any functionnal space H and T > 0, we will designate by CT (H)
the subspace of functions of C([0,+∞), H) that are T -periodic :

CT (H) = {f ∈ C([0,+∞), H),∀t > 0, f(t+ T, .) = f(t, .)} .

This section will be dedicated to the proof of the following theorem :

Theorem 3.1. Let T > 0 and g be a T -periodic function of CT (H1(∂Ω))∩W 1,1 ((0,
+∞), L2(∂Ω)

)
. There exists a unique T -periodic solution U to the following prob-

lem: 
U ∈ CT (PH1(Ω)),
∆U = 0 in Oe ∪ Oc,
U = g in ∂Ω, ∀ t > 0,
[σ∂nU ]Γ = 0,
Cm∂t [U ]Γ + S0 [U ]Γ + Sep(t, [U ]Γ) [U ]Γ = σc∂nU |Γ−

(9)

Also, let V0 ∈ PH1(Ω) and V be the solution to

V ∈ C([0,+∞), PH1(Ω)),
∆V = 0 in Oe ∪ Oc,
V = g on ∂Ω, ∀ t > 0,
V (t = 0, .) = V0(.) in Ω,
[σ∂nV ]Γ = 0,
Cm∂t [V ]Γ + S0 [U ]Γ + Sep(t, [V ]Γ) [V ]Γ = σc∂nV |Γ−

(10)

then, for all t > 0,

‖[U(t)]Γ − [V (t)]Γ‖2L2(Γ) 6 e
− C
Cm

t ‖[U0]Γ − [V0]Γ‖2L2(Γ) , (11)

where C is a real constant.
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C determines the convergence speed of a non-periodic solution towards the peri-
odic solution to problem 9. It will be evaluated in the next section.

Proof. Existence and uniqueness of the solution V is given by [6]. In order to prove
existence and uniqueness of periodic solutions to problem (9), we introduce the
Dirichlet-to-Neumann (or Steklov-Poincaré) operators Λc and Λe on the interface
for the Laplacian. Denote by νc (resp. νe) the unitary normal to Γ directed from
the inside to the outside of Oc (resp. Oe). Λc and Λe are defined by:

Λc : H1(Γ) → L2(Γ)
f 7→ νc · σc∇Uc|Γ−

where

{
∇ · (σc∇Uc) = 0 in Oc,

Uc|Γ = f.
(12a)

Λe : H1(Γ) → L2(Γ)
f 7→ νe · σe∇Ue|Γ+

where


∇ · (σe∇Ue) = 0 in Oe,

Ue|∂Ω = 0,

Ue|Γ = f.

(12b)

Using these operators, the transmission condition (2d) of the transmembrane
potential can be rewritten on the manifold Γ. For the sake of readability, we now
denote by u the transmembrane potential difference [U ]Γ across the membrane. The
condition now reads:

Cm∂tu+ Λc(Id + Λ−1
e Λc)−1u+ S0u+ Sep(u)u = G, (13)

where G = Λc

(
Id + Λ−1

e Λc

)−1
Λ−1

e Λ0g is the external source term which has been
brought to the interface via another Steklov-Poincaré operator:

Λ0 : H1(∂Ω) → L2(Γ)
g 7→ νe · σe∇Ue|Γ+

where


∇ · (σe∇Ue) = 0 in Oe,

Ue|∂Ω = g,

Ue|Γ = 0.

(14)

Let A := Λc(Id + Λ−1
e Λc)−1, associating the current across Γ to a given trans-

membrane potential. In [6], we have already proven that the operator (H1(Γ),A)
is m-accretive.

In order to prove the existence of periodic solutions, it is necessary to verify firstly
the boundedness of the solution u to the following problem, equivalent of (2):

u ∈ C([0,+∞), H1(Γ)), (15a)

Cm∂tu+Au+ S0u+ Sep(t, u)u = G, on Γ,∀t > 0 (15b)

u(t = 0, .) = u0(.) on Γ. (15c)

where G ∈ C([0,+∞), H1(Γ)) is not necessarily T -periodic, u0 ∈ H1(Γ), A is a m-
accretive operator and Sep the conductivities previously defined in eqs. (5) and (6).
We have, for all t > 0,

〈Cm∂tu, u〉+ 〈Au, u〉+ S0〈u, u〉+ 〈Sep(t, u)u, u〉 = 〈G, u〉. (16)

It is clear that for both conductivity models 〈Sep(t, u)u, u〉 is positive. Hence
thanks to Young’s inequality:

1

2
Cm∂t ‖u‖2L2(Γ) + 〈Au, u〉+ S0 ‖u‖2L2(Γ) 6

‖u‖2L2(Γ)

2α
+
αG2
∞

2
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for any α > 0, with G∞ := max
t∈[0,T ]

‖G(t)‖L2(Γ) . Since A is m-accretive,

1

2
Cm∂t ‖u‖2L2(Γ) + S0 ‖u‖2L2(Γ) 6

‖u‖2L2(Γ)

2α
+
αG2
∞

2
.

We can now invoque Gronwall’s lemma to prove boundedness of solutions in finite
times: ∀t > 0,

‖u(t)‖2L2(Γ) 6 ‖u0‖2L2(Γ) exp

(
−2αS0 − 1

αCm
t

)
+
αG2

∞

Cm

∫ t

0

exp

(
−2αS0 − 1

αCm
(t− s)

)
ds,

6 ‖u0‖2L2(Γ) exp

(
−2αS0 − 1

αCm
t

)
+

α2G2
∞

2αS0 − 1

(
1− exp

(
−2αS0 − 1

αCm
t

))
.

Setting α =
1

S0
minimizes the coefficient

α2

2αS0 − 1
. Therefore,

∀t > 0, ‖u(t)‖2L2(Γ) 6 ‖u0‖2 exp

(
− S0

Cm
t

)
+
G2
∞
S2

0

(
1− exp

(
− S0

Cm
t

))
. (17)

Now that we have proven boundedness of solutions in finite times, we will focus
on the existence and uniqueness of periodic solutions. Let G be a T -periodic source
in CT (H1(Γ)), and A a m-accretive operator in L(H1(Γ)). We will show that there
exists a unique periodic solution u satisfying :{

u ∈ CT (H1(Γ)),
Cm∂tu+Au+ S0u+ Sep(t, u)u = G.

(18)

Let u0 and v0 ∈ H1(Γ) be two initial states and u, v the associated solutions to
problem (18). Let w = u− v. w satisfies the homogeneous problem:{

Cm∂tw +Aw + S0w + Sep(t, u)u− Sep(t, v)v = 0,
w(t = 0, .) = w(T, .) = u0(.)− v0(.).

(19)

We have, for t > 0,

Cm∂t ‖w‖2L2(Γ) + 〈Aw,w〉+ S0 ‖w‖2L2(Γ) + 〈Sep(t, u)u− Sep(t, v)v, u− v〉 = 0, (20)

and since A is m-accretive,

Cm∂t ‖w‖2L2(Γ) + S0 ‖w‖2L2(Γ) + 〈Sep(t, u)u− Sep(t, v)v, u− v〉 6 0. (21)

In order to show that the difference w(t) is decreasing in ‖.‖L2(Γ) norm, we will
show that for each conductivity model, the term 〈Sep(t, u)u − Sep(t, v)v, u − v〉 is
positive.

• In the case of the β-model, it is easy to verify that for any (λ1, λ2) with λ1 6= 0,
the quantity

(β(λ1)λ1 − β(λ2)λ2) (λ1 − λ2) = β(λ1)λ2
1

(
1− λ2

λ1

)(
1− β(λ2)λ2

β(λ1)λ1

)
is positive, since β is an increasing function on [0,+∞).

• For the X-model, the ODE

d

ds
X(s, λ(t)) =

β(λ(t))−X(s, λ(t))

τep
,

has the following solution

X(s, λ(t)) = e
− s
τepX(t, λ(t)) +

β(λ(t))

τep

∫ s

0

e
− s−s

′
τep ds′.
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Therefore the mapping λ 7→ λX(t, λ(t)) is monotone. Using the same argu-
ment as for the β-model, we infer that for all (λ1, λ2), λ1 6= 0

(X(λ1)λ1 −X(λ2)λ2) (λ1 − λ2) = X(λ1)λ2
1

(
1− λ2

λ1

)(
1− X(λ2)λ2

X(λ1)λ1

)
is positive.

For each conductivity model, we have, for t > 0,

Cm∂t ‖w(t)‖2L2(Γ) + S0 ‖w(t)‖2L2(Γ) 6 0,

and

‖w(t)‖2L2(Γ) 6 e
− S0
Cm ‖w0‖2L2(Γ) . (22)

Let Φ(u0) := u(T ). Writing the previous equation in t = T , we have

||Φ(u0)− Φ(v0)||L2(Γ) 6 e
− S0
Cm

T ||u0 − v0||L2(Γ), (23)

with e−
S0
Cm

T < 1. Therefore, Φ is a contraction on L2(Γ) and there exists a
unique initial state u0 satisfying Eq. (18). We have also proven the asymptotic
convergence of any solution to problem (10) to the periodic solution. �

Remark 2. Note that the H1 regularity is required on u and v so as their values
are L∞, thanks to the injection Hs ↪→ L∞ for s > d

2 . If we had considered the
three dimensional case, then more regularity would have been necessary: u0 and v0

should be in H3/2(Γ) and G should be in CT (H3/2(Γ)).

Remark 3. If the operator A is coercive, with 〈Au, u〉 > CA ‖u‖2L2(Γ) for all u ∈
H1(Γ), equation (20) becomes

Cm∂t ‖w‖2L2(Γ) + S0 ‖w‖2L2(Γ) + 〈Sep(t, u)u− Sep(t, v)v, u− v〉 6 −CA ‖w‖2L2(Γ)

and

‖w(t)‖2L2(Γ) 6 e
−S0+CA

Cm ‖w0‖2L2(Γ) . (24)

In this case, the convergence speed depends not only on the base conductivity of
the membrane, but also on the shape of the cell and the extracellular conductivity,
that are present in the definition of A. We will detail in the next section a way to
highlight the influence of these parameters for a circular cell.

4. Estimations of the convergence speed in the case of the circular cell.

4.1. Coercivity of the operator A. Under specific conditions on the cell shape,
it is possible to refine the previous estimation of the convergence speed to periodic
solutions defined in equation 24, by studying the operator A. As many in vitro cells
are nearly spherical, it is reasonable to consider a circular cell at first. We begin by
proving the coercivity of A in concentric domains:

Proposition 1. Let Oc be a circular disk of radius R1 and Oe a concentric ring

around Oc of outer radius R2 > R1. Let H
1/2
p (Γ) be the space of functions of

H1/2(Γ) with a zero mean value. Then the operator (H
1/2
p (Γ),A) : u 7→ Au =

Λc(Id + Λ−1
e Λc)−1u with Λe and Λc defined by eqs. (12), is coercive.
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Proof. We proceed by explicitly defining the Dirichlet-to-Neumann operators. Let
us recall the definition of Λe:

Λe : u 7→ −σe∂nv with

 ∆v = 0 in Oe,
v = 0 on ∂Ω,
v = u on Γ.

Expressing u and v with their Fourier transforms:

v =
∑
k∈Z∗

αkr
|k|eikθ + βkr

−|k|eikθ, u =
∑
k∈Z∗

uke
ikθ,

with constant terms u0 = v0 = 0, the boundary conditions on Γ and ∂Ω lead to{
αkR

|k|
1 + βkR

−|k|
1 = uk,

αkR
|k|
2 + βkR

−|k|
2 = 0,

⇒ ∂nvk|R1
=
|k|
R1

R
2|k|
2 +R

2|k|
1

R
2|k|
2 −R2|k|

1

uk.

Therefore

Λ−1
e : vke

ikθ 7→ R1

σe |k|
R

2|k|
2 −R2|k|

1

R
2|k|
2 +R

2|k|
1

vke
ikθ.

Using the same method for Λc leads to

A = Λc

(
Id + Λ−1

e Λc

)−1
: uke

ikθ 7→ |k|
R1

(
1

σe

R
2|k|
2 −R2|k|

1

R
2|k|
2 +R

2|k|
1

+
1

σc

)−1

uke
ikθ.

Then

〈Au, u〉 >
(

1

σc
+

1

σe

)−1
1

R1

∑
k,l∈Z

|k|ukul〈eikθ, eilθ〉,

=

(
1

σc
+

1

σe

)−1
1

R1

∑
k,l∈Z

|k|ukul
∫ 2π

0

eikθe−ilθ dθ,

=

(
1

σc
+

1

σe

)−1
1

R1

∑
k∈Z
|k|u2

k,

>

(
1

σc
+

1

σe

)−1
1

R1
‖u‖2H1/2(Γ) ,

〈Au, u〉 > CA ‖u‖2L2(Γ) (25)

according to the definition of ‖·‖H1/2(Γ) given by [18], p. 141, with

CA :=

(
1

σc
+

1

σe

)−1
1

R1
.

Therefore A is coercive. �

Remark 4. Remark that we cannot extend this property to functions with a non-
zero mean value, as a consequence of the non-invertibility of Λc. For example,
constant functions u = u0 6= 0 verify 〈Au, u〉 = 0 < ‖u‖2H1/2(Γ).

Remark 5. Also note that it is possible to consider a cell embedded in a uniform
electric field by making R2 grow to infinity and considering only the case |k| = 1.
Under these conditions, that are the most frequently found in experiments on cells,
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the ratio (R
2|k|
2 − R2|k|

1 )/(R
2|k|
2 + R

2|k|
1 ) tends to 1 and ‖u‖H1/2(Γ) = ‖u‖L2(Γ), so

that

〈Au, u〉 =

(
1

σc
+

1

σe

)−1
1

R1
‖u‖L2(Γ) .

Remark 6. It is possible to extend the coercive property of A to the three di-
mensional case, using spherical harmonic functions instead of usual Fourier series.
Following the same computation, the estimation on the coercivity constant differs
from the 2D case by a factor 2 :

〈Au, u〉 >
(

1

σc
+

1

σe

)−1
1

2R1
‖u‖2H1/2(Γ) .

Remark 7. When the pulse g is constant, therefore periodic, this result shows
the convergence of the X-model towards a static state (U∗, X∗) characterized by
X∗ = β([U∗]Γ) for both conductivity models.

Going back to problem (19), the coercivity of the operator A leads to

1

2
Cm∂t||w||2L2(Γ) 6 −(S0 + CA)||w||2L2(Γ).

and for all t > 0

||w(t)||L2(Γ) < e−
(S0+CA)

Cm
t||w0||L2(Γ), (26)

In this case, the convergence speed also depends on parameters included in the
constant CA: the extracellular conductivity and the size of the cell. These depen-
dencies will be illustrated in the next section.

4.2. Numerical validation. In order to solve numerically equation (2), the same
scheme as in [6] was used. It is based on a method developped by Cisternino
and Weynans [2], using second order finite differences for spatial discretization and
adding unknowns at the intersection points of the interface Γ on the cartesian grid
for a special treatment of fluxes. The details of the method are explained and its
convergence proven in a another previous publication dedicated to the numerical
aspects of the problem [8].

Simulations were all performed in a two dimensional domain with the parame-
ters presented in table 1. Biological parameters of the simulations are taken from
the articles of Neu et al. [3]. The chosen cell size is however smaller in order to
match the experiments. Dynamics of electroporation (τep) and the maximal value
of conductivity (S1) were set during a previous fit of our model with the results of
Neu et al.

Since the numerical method is based on a cartesian grid, the simulated domain
is a square [xmin, xmax] × [ymin, ymax] that is large enough compared to the radius
of the cell, which is circular.

The chosen boundary conditions simulate a uniform electric field of amplitude
E. It consists in a Dirichlet condition in the x direction, and a homogeneous
Neumann condition in the y direction. In this case, effects due to the presence of
the square-shaped boundary on the transmembrane potential difference (∆TMP)
can be neglected.
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The problem to solve reads

∆U = 0 in Oe ∪ Oc,
U(t = 0, x, y) = 0 in Ω,
[σ∂nU ] = 0 on Γ,
Cm∂t [U ] + Sm(t, [U ]) [U ] = σc∂nU |Γ− on Γ
U(t, x, y) = Ex if x = xmin or x = xmax, ∀ t > 0,
∂nU(t, x, y) = 0 if y = ymin or y = ymax, ∀ t > 0.

(27)

Table 1. Parameters of numerical simulations, that are mostly
taken from [6]. EP stands for electropermeabilization, EPd for
electropermeabilized.

Variable Symbol Value Unit

Biological parameters:
Intracellular conductivity σc 0.455 S/m
Capacitance Cm 1 F/m2

Membrane surface conductivity S0 1.9 S/m2

Cell radius R1 6 µm

Specific parameters of the models:
EP threshold Vth 0.2 V
EP switch speed kep 40 V−1

EP characteristic time τep 1× 10−6 s
EPd membrane surface conductivity S1 1× 106 S/m2

Numerical parameters:
Simulation box size L 30 µm
Grid points (each side) N 100
Time step ∆t 200 ns

Pulse parameters:
Pulse duration Tp 10 µs
Pulse period T 20 µs
Intensity E 40 kV/m
Duration of simulation Tf 1000 µs

4.2.1. Linear model. Before studying the influence of the electropermeabilization
model on the convergence towards a periodic solution, we will focus on the variation
of the coercivity constant CA with the extracellular conductivity σe. In this section,
we will consider a constant surface conductivity of the membrane.

The chosen pulse parameters to study the linear effects are not commonly used.
Using a clinical pulse protocol with a linear model does not lead to relevant con-
vergence results since pulses are separated by a time that is long enough to let
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the cell retrieve its initial state. The solution is therefore already periodic for any
pulse intensity. To prevent this, the pulses frequency was considerably augmented
to avoid the complete discharge of the membrane between two pulses. Moreover,
the membrane capacitance Cm was also changed to 1 (instead of ∼0.01) to extend
the duration of the charge and discharge of the membrane. This allows also direct
comparison with the estimation of CA in equation (25).

The periodic solution u to problem (18) is obtained by performing long-time
simulations of 50 periods, and verifying that the last obtained period does not vary
from the previous one more than a ratio of 10−10 : if Tf designates the final time
of the simulation, ∫ Tf

Tf−T
‖u(t)− u(t− T )‖H1/2(Γ) dt∫ Tf

Tf−T
‖u(t)‖H1/2(Γ) dt

< 10−10. (28)

Under these conditions, the last period is considered as the periodic solution. We
then compute the L2 error

e(t) := ‖u(t)− u(t)‖L2(Γ) .

The error is fitted with an exponential function

e(t) ∼ A exp−Bt, (29)

where A and B are constants, as illustrated in figure 2. The constant B can be
considered as an estimation of the convergence speed CA.

The process is repeated for different extracellular conductivities σe and radiuses
R1. The Fourier coefficients of the solution are computed to check whether the
influence of the square-shaped simulation box is important or not. All simulations
showed that the greatest Fourier coefficient uk, |k| 6= 1 of the solution is u|3|, 1000
times lower than the main harmonic u|1|. Figure 3 shows that the dependency on
σe and R1 of the decay rate B 6 S0 + CA is satisfied. The evaluated constant B
has the same order of magnitude as the estimation of CA in (25).

4.2.2. Static conductivity model. The same method was used to study the decay
rate to periodic solutions when the membrane conductivity is a non-linear function
of the transmembrane potential difference. Simulations showed that the decay of
the difference between the solution and the periodic state is still an exponential
function of time:

e(t) ∼ e−Cte(0).

even in the non-linear case. The constant C still includes the base conductivity
of the membrane and the coercivity of the operator A. We propose to note C =
S0 + CA + CSep , where CSep accounts for the non-linearity of the conductivity.

Figure 4 shows the behaviour of the quantity C when the extracellular conduc-
tivity varies, for the static model of membrane conductivity. The dependency on σe

is similar to the linear case, the difference being only a constant factor. This can be
explained by the increase in the maximum value of the ∆TMP that is obtained for
each simulation. Lower conductivities induce a limited rise of the ∆TMP, contrary
to high conductivities, for which the ∆TMP is close to the threshold voltage. Then
the Lipschitz constant of λ 7→ λSep vary accordingly to the maximum value of the
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Figure 2. 2(a) : Transmembrane potential difference (solid) and
periodic solution (dotted) of the linear problem, with σe = 0.2
S.m−1. 2(b) : Fit of the L2 error e(t) between the ∆TMP and the
periodic solution, giving the constant CA.

∆TMP λm:

CSep
6 S1 max

λ
|(λβ(λ))′| = S1 (β(λm) + |λm|β′(λm)) , (30)

since λm < Vth in all our simulations. Figure 5 shows that the simulation results
are in agreement with this estimation, although the proposed constant for the β
model is one order of magnitude higher.

4.2.3. Dynamical model. Figure 6 shows a different evolution of the non-linearity
for the dynamical model. For lower conductivities, the behaviour is the same as
the static case, since the applied pulse train is not sufficient to reach the voltage
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Figure 3. Linear conductivity model : evaluated decay rate B of
the L2 error depending on the extracellular conductivity σe with
R1 = 6 µm (3(a)) and depending on the radius of the cell R1 with
σe = 0.5 S/m (3(b)). The first fitting constant has the same order
of magnitude as R−1

1 ∼ 167 000. The other constant is of the order
of (σ−1

e + σ−1
c )−1 ∼ 0.24.

threshold. However, as the extracellular conductivity rises, a drop of the conver-
gence speed occurs, which depends on the dynamics of X. If τep is low enough, the
dynamical model has a behaviour which is the same as the β-model, whereas slower
dynamics do not affect the convergence speed more than the linear constant.

Since the choice of the model has a quantitative impact on the convergence speed
to a periodic state, it may be important to translate the results of figure 6 in terms
of pulse application. Figure 7 gives the number of pulses that are necessary to
obtain a periodic response of the cell. This number is computed so as the solution
is no more than 1% different from the periodic solution in L2(Γ) norm:

N(σe) :=

⌈
2 ln 10

C(σe)T

⌉
(31)
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Figure 4. Evaluated convergence rate to the periodic solution for
the β-model Sm(λ) = S0 + S1β(λ). The contribution of the non-
linearity CSep has also been plotted, using values of CA from fig-
ure 3.

It is shown that for the permeabilizing cases (σe > 0.3 S/m), three to four additional
pulses are required for the dynamical model to achieve convergence, compared to
the static model for which two pulses are sufficient. If it is intended to obtain a
conductivity which corresponds to the periodic state, then considering only a static
model of conductivity can lead to a lower level of permeabilization than expected.

We emphasize that these modeling results were obtained on a circular cell with
uncommon parameters. However, when computing the electric potential with ex-
perimental pulse parameters (400 V/cm, 100 µs), we obtain convergence towards a
periodic state in no more than two or three pulses, which is below the usual eight
pulses used to permeabilize cell [4, 15, 17]. As the models are not fully calibrated
yet, these results are only qualitative, and the difference between the static and
dynamic models may be different for other electric pulses.

5. Conclusion. In this paper we study the evolution of solutions to several models
of electropermeabilization derived from Kavian et al. [6] in the specific case of
periodic sources. We show existence and uniqueness of periodic solutions, as well as
convergence to these solutions given any initial condition. Using a simulation tool
that was created specifically to solve electropermeabilization problems, we validate
theoretical estimations of the convergence speed to periodic solutions. In particular,
we show that the shape of the cell has a strong influence on this speed.

We emphasize that static models of membrane conductivity give an overesti-
mation of the convergence speed, compared to the dynamical model. Since the
permeabilization is linked to the conductivity, those models predict a higher perme-
abilization level of the cell for short pulse treatments. The number of pulses needed
to obtain a given conductivity is then lower than predictions of the dynamical model,
and the cell could not be actually porated.
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Figure 5. 5(a): Maximum ∆TMP during simulations for the β
static model. 5(b): Comparison of simulated and estimated Lips-
chitz constant CSep

as defined in 30. Solid line : difference between
non-linear and linear decay rates. Dashed line : estimations from
eq (30) with λm from figure 5(a).
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Figure 6. Decay rate to the periodic solution for the dynamical
case Sm(λ) = S0 + S1X(t), compared to the evaluations already
performed for the linear and the β models. Simulations of the
dynamical model were made for several characteristic durations:
τep = 1 µs(+), τep = 10 µs(4).
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Figure 7. Number of pulses N(σe) given by eq. (31) for the linear,
β and dynamical models.
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