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In this paper, we present a new finite differences method to simulate electropermeabili-
zation models, like the model of Neu and Krassowska or the recent model of Kavian et al. 
These models are based on the evolution of the electric potential in a cell embedded in 
a conducting medium. The main feature lies in the transmission of the voltage potential 
across the cell membrane: the jump of the potential is proportional to the normal flux 
thanks to the well-known Kirchoff law. An adapted scheme is thus necessary to accurately 
simulate the voltage potential in the whole cell, notably at the membrane separating the 
cell from the outer medium. We present a second-order finite differences scheme in the 
spirit of the method introduced by Cisternino and Weynans for elliptic problems with 
immersed interfaces. This is a Cartesian grid method based on the accurate discretization 
of the fluxes at the interface, through the use of additional interface unknowns. The main 
novelty of our present work lies in the fact that the jump of the potential is proportional 
to the flux, and therefore is not explicitly known. The original use of interface unknowns 
makes it possible to discretize the transmission conditions with enough accuracy to obtain 
a second-order spatial convergence. We prove the second-order spatial convergence in the 
stationary linear one-dimensional case, and the first-order temporal convergence for the 
dynamical non-linear model in one dimension. We then perform numerical experiments in 
two dimensions that corroborate these results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we aim at providing an efficient numerical method to compute the voltage potential in a biological cell 
submitted to high electric pulses. We propose a second-order Cartesian method to simulate the electric cell model of 
Kavian et al. but our method is applicable for other problems involving specific transmission conditions at the interface.

1.1. Motivations

Electropermeabilization (also called electroporation) is a significant increase in the electrical conductivity and permeabil-
ity of the cell membrane that occurs when pulses of large amplitude (a few hundred volts per centimeter) are applied to 
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Fig. 1. Geometry of the problem. The cell Oc is imbedded in the bath Oe. The whole domain � is defined by � = Oe ∪ Oc .

the cells: due to the electric field, the cell membrane is permeabilized, and then non-permeant molecules can easily enter 
the cell cytoplasm by diffusion through the electropermeabilized membrane areas. If the pulses are too long, too numerous, 
or if their amplitude is too high, the cell membrane is irreversibly destroyed and the cells are killed. However, should the 
pulse duration be sufficiently short (a few milliseconds or a few microseconds, depending on the pulse amplitude) then the 
cell membrane reseals within several tens of minutes: this is termed reversible electroporation, which preserves the cell 
viability and is used in electrochemotherapy to vectorize the drugs until the cell inside. Many clinical studies (phase II and 
phase III) have proven that electrochemotherapy of cutaneous or subcutaneous metastases or tumors, either with bleomycin 
or with cisplatin displays an objective response rate of more than 80%. Reduction of tumor size has been achieved with 
electrochemotherapy faster and more efficiently than in standard chemotherapy for both cutaneous and subcutaneous tu-
mors. Therefore the efficacy of such a treatment has been proven for superficial metastases. However, despite that cell 
electropermeabilization by micropulses is well-known from the experimental point of view, there is a lack of numerical 
results that are coherent with the experiments, preventing a systematic use of electropermeabilization in configurations far 
from the experiments, especially for deep tumors. This lack is mainly due to the complexity of the electropermeabilization 
models at the cell scale, which involve partial differential equations with non-standard transmission conditions through the 
cell membrane.

Actually, the probably most achieved model has been derived in the 2000s by Neu, Krassowska et al. from physical 
considerations ([19] and [5]). However, the model involved many parameters, that prevents fitting to the experiments. 
Moreover the theoretical analysis of this model, which can help in the derivation of accurate numerical schemes, seems 
to be hardly achievable due to the unboundedness of several unknowns. Roughly speaking, the current models provide a 
qualitative explanation of the electropermeabilization, but the problem of the quantitative description remains open. Very 
recently, Kavian et al. have provided a new phenomenological model involving few parameters, and they show the solvability 
of their model [10].

The aim of this paper is to present an accurate numerical method to compute the voltage potential in a biological cell 
when electropermeabilizing electric field is applied. The numerical method is a finite differences method on Cartesian grids 
inspired from the paper of Cisternino and Weynans [3] but adapted to the features of the electropermeabilization models.

1.2. Electropermeabilization model

We first recall the electropermeabilization model of Kavian et al. Due to its very thin thickness and its very low conduc-
tivity the cell membrane can be modeled as a surface electric material � with a capacity C and a surface conductivity S . 
The electroporation model of Kavian et al. describes the surface conductivity through a sliding-door type model [10] (see 
Fig. 1).

Denote by Oc the cell cytoplasm and by Oe the extracellular medium. Let σ be the conductivity chart of the medium, 
that is

σ =
{

σe, in the exterior domain Oe,

σc, inside the cell Oc.

The voltage potential satisfies the following P.D.E. model (1):

U (0, ·) = 0 in Oe ∪ Oc, (1a)

and for t > 0

�U = 0, in (0, T ) × (Oe ∪ Oc) , (1b)

U (t, ·) = g(t, ·) on (0,+∞) × ∂�, (1c)

with the jump conditions

[σ∂nU ] = 0, on (0, T ) × �, (1d)

C∂t[U ](t, ·) + S(t, [U ])[U ] = σc∂nU (t, ·)|�− , on (0, T ) × �. (1e)
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The surface membrane conductivity S is defined as an interpolation between the two values S ir and SL, which are respec-
tively the surface conductivity of an irreversibly electropermeabilized region and the lipid surface conductivity:

S(t, λ) := SL + (S ir − SL)X(t, λ), (1f)

where the function X satisfies the differential equation for t > 0 (we set λ(t) := λ(t, s) := [U (t, s)] for a.e. s ∈ �):⎧⎨
⎩

∂ X(t, λ)

∂t
= max

(
β(λ(t)) − X(t, ·)

τep
; β(λ(t)) − X(t, ·)

τres

)
.

X(0, λ) = 0,

(2)

where β is an even regularized Heaviside function. For instance β can be chosen as

for all λ ∈R, β(λ) := (1 + tanh(kep(|λ| − V rev))/2.

Despite jump condition (1d) is nothing but the flux continuity, the transmission condition on the jump of the poten-
tial (1d) reflects the influence of the thin resistive membrane. Actually, the jump of the potential is linked to the electric 
flux through a Kadam–Katchalsky type condition and therefore the solution U is not continuous across the interface �. Note 
that in condition (1e), it is necessary to implicit the flux ∂nu|�− in the time discretization for stability reasons, otherwise 
even for the linear model (which consists in S(t, λ) ≡ SL) a drastic Courant–Friedrichs–Lax condition appears, as previously 
observed by Guyomarc’h et al. [8]. More precisely, in their paper they used a forward Euler time scheme (Eq. (26) p. 1005 
of [8]), for which a very small time step has to be chosen. In [8], a discontinuous Galerkin method is proposed for the space 
discretization.

1.3. State of the art and originality of the numerical method

We present here a second-order finite differences method on a Cartesian grid, for which the flux of (1e) is implicit. The 
discretization is inspired by the second-order accurate method developed in [3] for elliptic problems with interfaces. The 
originality of the latter method relies on the use of additional unknowns located at the intersections between the grid and 
the interface, which makes possible to discretize straightforwardly the flux transmission conditions with enough accuracy 
to obtain a second-order spatial convergence.

This method is in the same spirit as the well-known Immersed Interface Method (IIM) of LeVeque and Li [12]. The 
IIM relies on a discretization of the elliptic operator near the interface with formulas accounting for the jumps across the 
interface. In order to find these formulas, a linear system with six unknowns has to be solved for each of the concerned 
grid points. The method is second-order accurate in L∞-norm. Numerous developments of the IIM have been performed, 
among them: the fast IIM algorithm of Li [13] for elliptic problems with piecewise constant coefficients, the Explicit Jump 
Immersed Interface Method (EJIIM) by Wiegmann and Bube [24], the Decomposed Immersed Interface Method (DIIM) by 
Bethelsen [2], and the MIIM (maximum principle preserving) by Li and Ito [14].

The first Cartesian grid method for elliptic problems was designed by Mayo in 1984 [16], and developed further in [17]
and [18]. In these previous papers, an integral equation was derived to solve elliptic interface problems with piecewise 
constant coefficients with a second-order accuracy in maximum norm. Another class of Cartesian method, recently intro-
duced by Zhou et al., is the Matched Interface and Boundary (MIB) method [25]. This method can provide finite difference
schemes of arbitrary high order. The solution on each side of the interface is extended on fictitious points on the other 
side. Coco and Russo [4] and Latige et al. [11] recently also proposed efficient schemes for this problem. Their approach is 
based, for the first ones, on the relaxation of inner equations and transmission conditions by a fictitious time method, and 
for the second ones on a piecewise polynomial representation of the solution on a dual grid. All the methods cited above 
are second-order accurate. Other classes of Cartesian methods also exist, less accurate in the case of interface problems, 
but probably simpler to implement and producing symmetric matrices: Fedkiw et al. [15] and Gibou et al. [7] developed 
methods inspired by Fedkiw’s Ghost-Fluid Method [6] for multiphase flows. These methods are second-order accurate for 
Dirichlet boundary conditions on arbitrary domains, but only first order accurate for interface problems. Note that all the 
above methods deal with explicitly given jumps of the Dirichlet and Neumann traces.

Contrary to these methods, the method introduced in [3] is based on the use of additional interface unknowns rather 
than a non-standard discretization of the Laplacian directly accounting for the discontinuities near the interface. The 
interface unknowns are particularly useful in the case of the electropermeabilization model, since the value of the trans-
membrane potential is accurately needed. Moreover, the study of the continuous electropermeabilization model includes a 
re-formulation of the problem defined in the whole space as a problem on the interface using the non-local Steklov–Poincaré 
operators. It is thus quite natural to re-formulate the numerical method on interface points with discrete Steklov–Poincaré 
operators, and the use of interface unknowns simplifies this re-formulation. Directly placing points on the interface is also 
useful to this model, as some data are only defined on the membrane, such as the surface membrane conductivity S . This 
property of the method makes it possible for example to compute integrals on the interface with much efficacy, since no 
interpolation between grid values is needed.

Concerning the discretization requirements needed to get a second-order spatial convergence, it has been noted since 
the introduction of Cartesian grid methods that an O (h) truncation error at the points near the interface is enough to get 
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an O (h2) convergence in maximum norm if the discretization is second-order on the regular grid points. However, in the 
literature, only few works have been devoted to this study. For one-dimensional methods, Huang and Li performed in [9]
a convergence analysis of the IIM, using non-negative comparison functions, and in [24] Wiegmann and Bube presented 
a proof of convergence for one-dimensional problems with piecewise constant coefficients, using a detailed analysis and 
identification of the coefficients of the matrices involved. For two-dimensional methods, Beale and Layton proved in [1] the 
second-order convergence for piecewise constant diffusion coefficients, using the fact that a grid function located near the 
interface can be written as the divergence of a function smaller in norm, and Li and Ito proved in [14] the second-order 
convergence of their MIIM, using the maximum principle, but with a technical condition related to the location of the 
interface with respect to the grid point that is not always satisfied. Here again, we emphasize that these methods deal with 
explicitly given jumps of the Dirichlet and Neumann traces.

In this paper we present a new approach to obtain the second-order convergence in maximum norm. Note that the 
electropermeabilization problem is sensibly different from the elliptic problem studied in the references above, due to the 
jump of the Dirichlet trace, which is given implicitly. We thus propose a second-order method adapted from [3]. The proof 
of the order of accuracy is based on the monotonicity of the discretization matrix. Note that this monotonicity is not trivial 
since the discretization matrix is not diagonally dominant. Once it is proven that this matrix is monotone, then it is possible 
to obtain accurate estimations of the coefficients of its inverse, which, combined to the truncation error coefficients, lead to 
the second-order convergence.

1.4. Outline of the paper

The paper is organized as follows. Section 2 describes the finite differences method used to solve numerically the elec-
tropermeabilization model. In Section 3, we first prove that, in one dimension, this method is convergent with second order 
accuracy for the static linear model in space. We then prove, in Section 4, that in one dimension the method converges with 
first-order accuracy in time in the dynamical non-linear case. For the sake of clarity, we reduce the theoretical assessment 
to one dimension. In Section 5, we present two-dimensional numerical validations that corroborate the results of the previ-
ous sections. In particular we show that for the linear problem, the second-order accuracy is reached, while the method for 
the dynamical non-linear case converges with first-order accuracy in time. We conclude the paper by perspectives on the 
applications of our numerical scheme.

2. Statement of the method

2.1. Description of the interface and classification of grid points

We choose to perform the discretization on a Cartesian grid covering Oe ∪ Oc. The points on this grid are defined by 
Mij = (xi, y j) = (ih, jh), with h the grid spacing. We denote by uij the approximation of U at the point (xi, y j). If necessary, 
the additional subscript un

ij will be used to indicate the time tn = n dt , where dt is the time step. Similarly, if it is necessary 
to distinguish in which subdomain the grid point is, we will use the notations uc

i j and ue
i j .

In order to describe accurately the geometric configuration in the vicinity of the interface we use the level set method 
introduced by Osher and Sethian [21]. We refer the interested reader to [22,23] and [20] for recent reviews of this method. 
The zero isoline of the level set function, defined by the signed function ϕ , given by:

ϕ(x) =
{

dist�(x), outside of the interface,

−dist�(x), inside of the interface,
(3)

represents implicitly the interface � immersed in the computational domain. A useful property of the level set function is

n(x) = ∇ϕ(x)

|∇ϕ(x)| , (4)

where n(x) is the outward normal vector of the isoline of ϕ passing on x. This allows us to compute the values of the 
normal to the interface. In the present study the level set will always be stationary, since the electropermeabilization model 
does not take into account a possible volume variation of the cell.

We say that a grid point is neighboring the interface if the sign of ϕ changes between this point and at least one of its 
neighbors, see Fig. 2. On the contrary, grid points far from the interface are said regular grid points. If the intersection of the 
interface and the segment [Mij Mi+1 j] exists, then we define the interface point Ii, j,E = (x̃i, j,E, y j) as this intersection. In the 
same way, if the intersection of the interface and [Mi−1 j Mij] exists, then we define the interface point Ii, j,W = (x̃i, j,W, y j)

as this intersection.
Similarly, the interface points Ii, j,N = (xi, ỹi, j,N) and Ii, j,S = (xi, ỹi, j,S) are respectively defined as the intersections of the 

interface and the segments [Mij Mij+1] and [Mij−1 Mij]. Let us remark that, with this notation, the same interface point can 
be described in two different ways, see Fig. 2:

Ii, j,S = Ii, j−1,N or Ii, j,E = Ii+1, j,W.
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Fig. 2. Example of geometrical configuration, with regular grid points in black, points neighboring the interface in white, and interface points with the two 
possible notations.

At each interface point we create two additional unknowns, called interface unknowns, and denoted by ũi, j,γ with γ =
E, W, N or S. The interface unknowns carry the values of the numerical solution on each side of the interface.

2.2. Global discretization of the system

We choose a first-order semi-implicit temporal discretization of the equations on the electric potential U , and an explicit 
first-order Euler discretization for X . The computational domain is a square of characteristic size 1, with N points in both 
x- and y-directions.

We denote by (�u)i j the finite differences approximation of the Laplacian at point Mi, j . The approximated normal 
derivative at the interface point Ii, j,γ in the exterior (resp. interior domain), with γ = E, W, N or S, is denoted by (∂nue)i, j,γ
(resp. (∂nuc)i, j,γ ). We write the discretized system on the Cartesian grid:

• The Laplace operator on the grid points:

∀ (i, j) ∈ {1, .., N}2 , ∀n � 0, (�u)n+1
i j = 0. (5)

• The jump conditions (1d) :

∀ (i, j) ∈ {1, .., N}2 , ∀n � 0, if Ii, j,γ exists, then [σ(∂nu)n+1
i, j,γ ] = 0. (6)

• The transmembrane potential evolution (1e):

∀ (i, j) ∈ {1, .., N}2 , ∀ n � 0, if Ii, j,γ exists, then

C
[u]n+1

i, j,γ − [u]n
i, j,γ

dt
+ Sn

i, j,γ [u]n
i, j,γ = σc (∂nuc)

n+1
i, j,γ . (7)

where Sn
i, j,γ , with γ = E, W, N or S, is given by

Sn
i, j,γ = SL + S ir Xn

i, j,γ .

• The coefficient X :

∀ (i, j) ∈ {1, .., N}2 , ∀ n � 0, if Ii, j,γ exists, then

Xn+1
i, j,γ = Xn

i, j,γ + dt max

(
β([u]n

i, j,γ ) − Xn
i, j,γ

τep
; β([u]n

i, j,γ ) − Xn
i, j,γ

τres

)
. (8)

Initial conditions are u0 = 0 and X0 = 0. We impose Dirichlet boundary conditions on the outer boundary of the compu-
tational domain. What we call in the following “linear problem” corresponds to the case where S is kept constant in time, 
in which case no electropermeabilization happens.

It is also possible to discretize the transmembrane potential evolution as

C
[u]n+1

i, j,γ − [u]n
i, j,γ

dt
+ Sn

i, j,γ [u]n+1
i, j,γ = σc (∂nuc)

n+1
i, j,γ .

This option can be less convenient because it requires to solve at each time step a linear system with a different matrix, 
while the discretization that we have chosen uses the same matrix at each iteration. But on the other side, because it is 
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Fig. 3. Examples of discretization: (a): Laplacian, (b): second-order flux, (c): first-order flux.

more implicit, it may require weaker stability conditions on the time step. The analysis of this alternative discretization can 
be carried on in a similar way to the discretization that we have chosen.

In the following subsection we explain how we discretize the terms (�u)n
i j , (∂nue)

n
i, j,γ and (∂nuc)

n
i, j,γ with γ = E, W, N

or S. Once these discretizations are achieved we obtain a linear system that is solved with a standard linear solver such as 
restarted GMRES.

2.3. Discrete elliptic operator

On the regular grid points, we use the standard centered finite differences scheme to approximate the Laplacian:

(�u)i j = ui+1 j − 2uij + ui−1 j

h2
+ uij+1 − 2uij + uij−1

h2
. (9)

This formula is second-order accurate:

(�u)i j = �U (xi, y j) + O (h2).

For a grid point Mij neighboring the interface, we compute (�u)i j with the values on Mij and the closest points (grid 
or intersection points) to Mij in each direction. For instance for the situation illustrated on Fig. 3(a) we get:

(�u)i j =
ũi, j,E − uij

x̃i, j,E − xi
− uij − ui−1 j

h

(x̃i, j,E − xi) + h

2

+ uij+1 − 2uij + uij−1

h2
. (10)

This discretization is first-order accurate:

(�u)i j = �U (xi, y j) + O (h).

2.4. Discretization of fluxes at the interface

Figs. 3(b) and 3(c) provide examples of interface configurations. It is straightforward to compute a second-order approx-
imation of the x-derivative with three a priori non-equidistant points. For example, we approximate the x-derivative on the 
left side of the interface with the points Mi−1 j , Mij and Ii, j,E by:

(∂xu)i, j,E = (xi − x̃i, j,E)

h (xi−1 − x̃i, j,E)
(ui−1 j − ũi, j,E) − (xi−1 − x̃i, j,E)

h (xi − x̃i, j,E)
(uij − ũi, j,E). (11)

We thus have

(∂xu)i, j,E = ∂U

∂x
(x̃i, j,E, y j) + O (h2).

The right x-derivative ∂U
∂x (x̃i+1, j,W, y j) is approximated by (∂xu)i+1, j,W which is computed similarly.

Along the y-direction there is no grid unknown that can be used so we use a linear combination of (∂y u)i j and (∂yu)i−1 j , 
defined respectively as second-order approximations of the y-derivative on Mij and Mi−1 j . We obtain

(∂yu)i, j,E = x̃i, j,E − xi−1
(∂yu)i j − x̃i, j,E − xi

(∂yu)i−1 j . (12)

h h
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Fig. 4. Centered and decentered stencils. In (a) the discretization of the flux on the point Ii, j,E involves the intersection point Ii+1, j,S and is ill-conditioned. 
(b) shows the decentered stencil: the discretization of the flux on the point Ii, j,E involves grid point (i + 1, j + 2) instead of the intersection point Ii+1, j,S.

The resulting formula is second-order accurate:

(∂yu)i, j,E = ∂U

∂ y
(x̃i, j,E, y j) + O (h2).

The formulas for (∂yu)i j and (∂yu)i−1 j depend on the local configuration on the interface, but are based on the same 
principle as for (11). The formulas (11) and (12) are consistent if the point Mi−1, j belongs to the same domain as Mij . 
Consequently they require that there are at least two adjacent points in each direction belonging to the same domain. It 
means that a resolution of at least two points in each direction is necessary for this discretization. It is the case most of the 
time if the interface is sufficiently resolved.

Nevertheless, in some cases, as described on Fig. 3(c), only one grid point is available in one direction. In this case, we 
use a first-order discretization involving only three points of this side of the interface: see Fig. 3(c). Actually, it is always 
possible to perform at least a first order discretization for the fluxes: if two interfaces are arbitrary close, there are two 
possibilities. Either they lie between the same two grid points, which means that the interface is under-resolved, and the 
algorithm does not know that there is a small space between the two interfaces, but numerically there is no problem, or the 
two interfaces are separated by at least one grid point. In this case, using this grid point and the interface points associated, 
it is always possible to perform a first order discretization in the same spirit as on Fig. 3(c).

The normal derivatives at the interface are discretized by the scalar product of x- and y-derivatives with the normal to 
the interface:

(∂nu)i, j,γ = (∂xu)i, j,γ nx + (∂yu)i, j,γ ny, with γ = E,W,N,S, (13)

with (nx, ny) an approximation of the vector normal to the interface at point Ii, j,γ .
Numerical instabilities may appear when the discretization of the flux at an interface point involves another intersection 

point closely located to a grid point. This situation is illustrated in Fig. 4(a). In these cases we use a decentered discretiza-
tion: instead of using the second intersection point we use the closest grid point located in the opposite direction. For 
instance, on Fig. 4(b), the term (∂yuc)i, j,E is computed with the grid points (xi+1, y j), (xi+1, y j+1) and (xi+1, y j+2) instead 
of (xi+1, y j), (xi+1, y j+1) and Ii+1, j,S.

This alternative discretization may be not possible in some cases, because the closest grid point located in the opposite 
direction lies on the other side of the interface: for instance, if one extremity of a subdomain is only two grid points thick. 
Two options are then available: either use the usual stencil, which is possible if there are two points in each direction, or 
simply use a first-order scheme. We detail in Algorithm 1 how to choose the stencil for the flux discretization.

2.5. Nature of resulting linear system

Obviously the matrix resulting from the discretization detailed above is non-symmetric, due to the use of interface values. 
We have plotted on Fig. 5 two examples of matrix structures, one where the interface unknowns are numbered separately 
from grid unknowns, and one where the interface unknowns are numbered between grid unknowns that neighbor them.

On Fig. 6 are plotted the values of the condition number of the discretization matrix in two dimensions, as a function 
of the number of grid points and as a function of the conductivity parameter σe. The global tendency is that the condition 
number decreases when the number of discretization points increases, or when the conductivity increases. The higher 
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Algorithm 1 Algorithm for choosing the left flux stencil at interface point Ii, j,E.
Without loss of generality, we assume that the interface point, denoted in the following Ii, j,E, is on the x-axis, and we only describe the stencil construction 
for the left flux.

1. Check if the grid points Mij and Mi−1 j belong to the same subdomain. If yes, then go to 2, otherwise go to 3;
2. Construction of a second-order stencil:

• Computation of a second-order x-derivative (∂xu)i, j,E on Ii, j,E with points Ii, j,E, Mij and Mi−1 j

• Computation of a second-order y-derivative (∂yu)i j on grid point Mij :
– if Mij+1 belongs to the same subdomain as Mij , then choose Mij+1, otherwise if Mij−2 belongs to the same subdomain as Mij then choose Mij−2, 

otherwise choose the interface point between Mij and Mij+1.
– if Mij−1 belongs to the same subdomain as Mij , then choose Mij−1, otherwise if Mij+2 belongs to the same subdomain as Mij then choose Mij+2, 

otherwise choose the interface point between Mij and Mij−1.
– With the two chosen points and Mij , compute a second-order y-derivative (∂y u)i j on grid point Mij .

• Computation of a second-order y-derivative (∂yu)i−1 j on grid point Mi−1 j , similarly as for (∂y u)i j

• Computation of a second order y-derivative (∂yu)i, j,E on Ii, j,E with formula (12)
3. Construction of a first-order stencil:

• Computation of a first-order x-derivative on Ii, j,E with points Mij and Ii, j,E,
• Computation of a first-order y-derivative on point Mij with point Mij and Mij−1 or Mij+1 depending on the orientation of the normal.

4. Computation of the normal derivative on Ii, j,E with formula (13)

Fig. 5. Examples of matrix structures: only non-zero terms are plotted, in black, (a): interface unknowns numbered separately from grid unknowns, (b): in-
terface unknowns are numbered between grid unknowns.

Fig. 6. Numerical study of the condition number in 2D, (a): depending of the number of points each direction, for σe = 1.5 S/m, (b): depending on the 
conductivity parameter σe, for 100 × 100 grid points.

values of the condition number are probably due to small distances between grid points and interface points, which can 
occur independently of the number of discretization points.

3. Second order convergence in linear static unidimensional case

In this section, we study the convergence of the method for the linear static model. In Subsections 3.1 and 3.2 we 
respectively give the notations that will be used hereafter and detail the linear system arising from the discretization of 
the method. Then in Subsection 3.3 we prove the monotonicity of the matrix of the linear system. Here the discretization 
matrix has not the usual features that help in characterizing monotone matrices, such as the diagonally dominant property. 
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Fig. 7. Geometrical configuration in one dimension.

We directly prove that all the coefficients of the inverse matrix are positive. At the end, in Subsection 3.4 we use the 
monotonicity to estimate accurately the value of the coefficients of the inverse matrix, depending on their location in the 
matrix, and we prove the second-order convergence of the method in maximum norm.

3.1. Notations

Let us give some additional notations about the spatial configuration that we consider, cf. Fig. 7: the interior domain and 
the exterior domain are

Oc = (xL, xR) and Oe = (0, xL) ∪ (xR,1).

The outer boundary and the interface are composed of two points:

∂� = {0} ∪ {1} and � = {xL} ∪ {xR} .

The interface point xL is located between the grid points xkL−1 and xkL and let

xL = xkL − αh,

with 0 ≤ α ≤ 1. Similarly, the interface point xR is located between the grid points xkR and xkR+1 and we set

xR = xkR + βh,

with 0 ≤ β ≤ 1.
There are 2 interface unknowns on each interface point, one interior and one exterior: ue

L, uc
L, uc

R and ue
R. The computa-

tional domain is discretized on a uniform grid, where the grid points xi are defined by

xi = i h, with h = 1/(N + 1).

3.2. Linear system

The fluxes at the interface are computed with the formulas:

(∂nuc)L = − 1 + 2α

α(α + 1)h
(ukL − uc

L) + α

(1 + α)h
(ukL+1 − ukL), (14)

(∂nuc)R = 1 + 2β

β(β + 1)h
(uc

R − ukR) − β

(β + 1)h
(ukR − ukR−1), (15)

and

(∂nue)L = − 3 − 2α

(1 − α)(2 − α)h
(ue

L − ukL−1) + 1 − α

(2 − α)h
(ukL−1 − ukL−2), (16)

(∂nue)R = 3 − 2β

(1 − β)(2 − β)h
(ukR+1 − ue

R) − 1 − β

(2 − β)h
(ukR+2 − ukR+1). (17)

All these flux formulas are on the same principle: if you have three points x1, x2 and x3, then the coefficients allocated to 
these points in order to approximate with second-order accuracy the derivative in x1 are respectively c1, c2 and c3 such 
that:

c1 + c2 + c3 = 0, (18a)

x1c1 + x2c2 + x3c3 = 1 or −1, (18b)

x2
1c1 + x2

2c2 + x2
3c3 = 0. (18c)

The sign in the above relationships depends on the orientation of the outer normal to the interface.
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The jump conditions can be expressed as

σc(∂nuc)L − σe(∂nue)L = 0,

σe(∂nue)R − σc(∂nuc)R = 0,

S(ue
L − uc

L) − σc(∂nuc)L = 0,

σc(∂nuc)R − S(ue
R − uc

R) = 0,

but we rather rewrite them as

S(ue
L − uc

L) − σe(∂nue)L = 0, (19a)

S(ue
R − uc

R) − σe(∂nue)R = 0, (19b)

σc(∂nuc)L − S(ue
L − uc

L) = 0, (19c)

σc(∂nuc)R − S(ue
R − uc

R) = 0, (19d)

so that the matrix of the linear system is monotone.
The discretization of the Laplacian operator on all grid points reads

−u0 + 2u1 − u2

h2
= 0,

−u1 + 2u2 − u3

h2
= 0,

...
...

−ukL−3 + 2ukL−2 − ukL−1

h2
= 0,

−2
ue

L − ukL−1

(1 − α)(2 − α)h2
+ 2

ukL−1 − ukL−2

(2 − α)h2
= 0,

−2
ukL+1 − ukL

(1 + α)h2
+ 2

ukL − uc
L

α(1 + α)h2
= 0,

−ukL + 2ukL+1 − ukL+2

h2
= 0,

...
...

−ukR−2 + 2ukR−1 − ukR

h2
= 0,

−2
uc

R − ukR

β(1 + β)h2
+ 2

ukR − ukR−1

(1 + β)h2
= 0,

−2
ukR+2 − ukR+1

(2 − β)h2
+ 2

ukR+1 − ue
R

(1 − β)(2 − β)h2
= 0,

−ukR+1 + 2ukR+2 − ukR+3

h2
= 0,

...
...

−uN−2 + 2uN−1 − uN

h2
= 0,

−uN−1 + 2uN − uN+1

h2
= 0.

3.3. Preliminary results

In the following, we denote by A the discretization matrix of the linear system described in the previous subsection. We 
first prove that A is monotone by showing that all the coefficients of its inverse are positive. Let u be an array of size N + 4
corresponding to N grid points and four interface unknowns such that Au � 0, and let us show that u � 0.
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3.3.1. Sign of the normal interface derivative
We begin by proving that if the minimum of u is located on an interior interface point, then the normal derivative at 

this interface point is negative. Similarly, if the minimum of u is located on an exterior interface point then the normal 
derivative at this interface point is positive. We do it for example for the normal derivative on xL in the exterior domain. 
The other cases would be treated exactly in the same way. The exterior normal derivative at xL is

(∂nue)L = − 3 − 2α

(1 − α)(2 − α)h
(ue

L − ukL−1) + 1 − α

(2 − α)h
(ukL−1 − ukL−2).

By hypothesis, Au � 0 hence

ukL−1 − ukL−2

h
�

ue
L − ukL−1

(1 − α)h
,

therefore

(∂nue)L � − 3 − 2α

(1 − α)(2 − α)h
(ue

L − ukL−2) + 1 − α

(2 − α)(1 − α)h
(ue

L − ukL−1),

� −3 + 2α + 1 − α

(1 − α)(2 − α)h
(ue

L − ukL−1),

� − 1

(1 − α)h
(ue

L − ukL−1),

� 0.

3.3.2. Monotonicity of the matrix
The minimum of u can either be reached on a grid point in the interior or exterior subdomains, or on an interface point, 

interior or exterior.

• if the minimum is reached on a grid point in the interior domain:
In this case we denote by imin the index of the smallest component of u. We first assume that imin 
= 1, N . Using the 
Laplacian inequality on this point:

−uimin+1 + 2uimin − uimin−1

h2
� 0,

we deduce that uimin−1 and uimin+1 are equal to uimin , and, using then all other Laplacian inequalities in the interior 
subdomain, we deduce that all values in the interior subdomain are equal to the minimum value uimin . Therefore, 
the approximate normal derivative is zero. Thus, using discrete relationships (19a)–(19d), the jump of the numerical 
solution and the normal exterior derivative are all negative:

0 = σc(∂nuc)L � S(ue
L − uc

L) � σe(∂nue)L,

0 = σc(∂nuc)R � S(ue
R − uc

R) � σe(∂nue)R.

We consider for instance the situation on the right interface point. From S(ue
R − uc

R) � 0 we deduce that ue
R = uimin . We 

can also write

(∂nue)R = 3 − 2β

(1 − β)(2 − β)h
(ukR+1 − ue

R) − 1 − β

(2 − β)h
(ukR+2 − ukR+1) � 0, (20)

thus

3 − 2β

(1 − β)(2 − β)h
(ukR+1 − ue

R) � 1 − β

(2 − β)h
(ukR+2 − ukR+1).

Moreover, due to the Laplacian inequality,

ukR+2 − ukR+1 �
ukR+1 − ue

R

1 − β
,

thus

3 − 2β

(1 − β)
(ukR+1 − ue

R) � ukR+1 − ue
R.

Therefore ukR+1 − ue
R � 0, from which we deduce that ukR+1 = ue

R = uimin and thus ukR+2 = ue
R = uimin also. Using the 

Laplacian inequality in the exterior subdomain we deduce that all point values in the right exterior subdomain are 
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equal to uimin . The Laplacian inequality on the first grid point yields:

2u1 − u2

h2
� 0,

therefore all the values of u are positive.
• if the minimum is reached on a grid point in the exterior domain:

Let us assume for instance that it is located on the left side. The right side would be treated in the same way. Following 
the same reasoning as above, we deduce directly that all values in the left exterior subdomain are equal and positive. 
Therefore, as the minimum is positive, then all values of u are positive.

• if the minimum is reached on an exterior interface point.
Let us assume for instance that it is reached on ue

R. We have ue
R − uc

R � 0 and due to (19a)–(19d), we can write:

0 � S(ue
R − uc

R) � σe(∂nue)R.

Now we use the same reasoning as in the case where the minimum is on a grid point in the interior subdomain, from 
inequality (20) and conclude that all values in the right exterior subdomain are positive and equal to the minimum 
value. Consequently all values of u are positive.

• if the minimum is reached on an interior interface point.
Suppose for instance that uc

L is the minimum. Due to the preliminary result in Subsection 3.3.1, the normal derivative 
(∂nuc)L is then negative. Due to (19a)–(19d), we can write:

0 � σc(∂nuc)L � S(ue
L − uc

L) � σe(∂nue)L.

Therefore ue
L = uc

L. We conclude with the same reasoning than in the previous case that all values of u are positive.

We conclude that the matrix A is monotone and thus invertible.

3.3.3. Estimation of 
∥∥A−1

∥∥∞

Since all the coefficients of A−1 are positive we can write 
∥∥∥A−1

∥∥∥∞ = max
1�i�N

N∑
j=1

a−1
i, j . We want to build an array v such 

that

Av =

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ ,

in order to have: 
N∑

j=1

a−1
i, j = vi . We look for v as a quadratic function with respect to x.

For values on the left exterior subdomain, including the interface point values, we set

vi = −x2
i /2 + Cxi + D,

for values on the interior subdomain, including the interface point values vi is such that

vi = −x2
i /2 + C ′xi + D ′,

and for values on the right exterior subdomain, including the interface point values, we write

vi = −x2
i /2 + C ′′xi + D ′′.

We check that the discrete Laplacian equalities are satisfied for (vi)i=2,N−1

− vi+1 − 2vi + vi−1

h2
= 1 for all i ∈ {2,kL − 2} ∪ {kL + 1,kR − 1} ∪ {kR + 2, N − 1} ,

−
ve

L − vkL−1

(1 − α)h
− vkL−1 − vkL−2

h
(2 − α)h

2

= 1, −
vkL+1 − vkL

h
− vkL − vc

L

αh
1 + α

2

= 1,

−
vc

R − vkR

βh
− vkR − vkR−1

h
1 + β

= 1, −
vkR+2 − vkR+1

h
− vkR+1 − ve

R

(1 − β)h
(2 − β)h

= 1.
2 2
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In order to satisfy the same relationship for the lines v1 and v N , corresponding to the two ends of the domain, we impose

D = 0,

D ′′ = −C ′′ + 1/2.

For the lines corresponding to the jump conditions, inserting (14)–(17) in the relationships (19) we get

S(ve
L − vc

L) + σe
3 − 2α

(1 − α)(2 − α)h
ve

L − σe
2 − α

(1 − α)h
vkL−1 + σe

1 − α

(2 − α)h
vkL−2 = 1,

S(ve
R − vc

R) − σe
2 − β

(1 − β)h
vkR+1 + σe

3 − 2β

(1 − β)(2 − β)h
ve

R + σe
1 − β

(2 − β)h
vkR+2 = 1,

−σc
1 + α

αh
vkL + σc

1 + 2α

α(α + 1)h
vc

L + σc
α

(1 + α)h
vkL+1 − S(ve

L − vc
L) = 1,

σc
1 + 2β

β(β + 1)h
vc

R − σc
1 + β

βh
vkR + σc

β

(β + 1)h
vkR−1 − S(ve

R − vc
R) = 1.

Due to the relationships (18), the above expressions simplify into:

S
(
(C − C ′)xL + D − D ′)+ σeC = 1,

S
(
(C ′′ − C ′)xR + D ′′ − D ′)− σeC ′′ = 1,

σcC ′ − S
(
(C − C ′)xL + D − D ′)= 1,

−σcC ′ − S
(
(C ′′ − C ′)xR + D ′′ − D ′)= 1.

With such coefficients C, D, C ′, D ′, C ′′ and D ′′ that do not depend on h we have∥∥∥A−1
∥∥∥∞ = max

1�i�N
vi � max

(
C2

2
+ D,

C ′ 2

2
+ D ′, C ′′ 2

2
+ D ′′

)
.

3.4. Proof of second-order convergence

Proposition 3.1. The numerical solution to the linear stationary problem converges with a second-order accuracy in L∞-norm to the 
exact solution to the problem.

Proof. We denote by z the i-th row of A−1, i.e. z j = A−1
i, j . We use the same indexing system for z as for the unknowns of 

the linear system. We define the Kronecker symbol for interface values as:

δ
L,c
i = 1 if i is the index of the left interior interface value,0 otherwise,

δ
R,c
i = 1 if i is the index of the right interior interface value,0 otherwise,

δ
L,e
i = 1 if i is the index of the left exterior interface value,0 otherwise,

δ
R,e
i = 1 if i is the index of the right exterior interface value,0 otherwise.

We multiply the row vector z with the columns of A.
The columns 1 to kL − 1 yield:

2z1 − z2 = h2δ1
i ,

−z1 + 2z2 − z3 = h2δ2
i ,

...
...

−zkL−4 + 2zkL−3 − zkL−2 = h2δ
kL−3
i ,

−zkL−3 + 2zkL−2 − 2

(2 − α)
zkL−1 + σeh

1 − α

2 − α
ze

L = h2δ
kL−2
i ,

−zkL−2 + 2

(1 − α)(2 − α)
zkL−1 + 2

(2 − α)
zkL−1 − σeh

2 − α

1 − α
ze

L = h2δ
kL−1
i .

The columns kL + 1 to kR − 1 yield:
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−zkL+1 + 2

(1 + α)
zkL + 2

α(1 + α)
zkL − σch

1 + α

α
zc

L = h2δ
kL
i ,

2zkL+1 − zkL+2 − 2

(1 + α)
zkL + σch

α

1 + α
zc

L = h2δ
kL+1
i ,

−zkL+1 + 2zkL+2 − zkL+3 = h2δ
kL+2
i ,

...
...

−zkR−3 + 2zkR−2 − zkR−1 = h2δ
kR−2
i ,

−zkR−2 + 2zkR−1 − 2

(1 + β)
zkR + σch

β

β + 1
zc

R = h2δ
kR−1
i ,

−zkR−1 + 2

β(1 + β)
zkR + 2

(1 + β)
zkR − σch

1 + β

β
zc

R = h2δ
kR
i ,

and the columns kR + 1 to N:

2

2 − β
zkR+1 + 2

(1 − β)(2 − β)
zkR+1 − σeh

2 − β

1 − β
ze

R − zkR+2 = h2δ
kR+1
i ,

2zkR+2 − zkR+3 − 2

2 − β
zkR+1 + σeh

1 − β

2 − β
ze

R = h2δ
kR+2
i ,

−zkR+2 + 2zkR+3 − zkR+4 = h2δ
kR+3
i ,

...
...

−zN−2 + 2zN−1 − zN = h2δN−1
i ,

−zN−1 + 2zN = h2δN
i .

The columns corresponding to interface values yield:(
S + σe

3 − 2α

(1 − α)(2 − α)h

)
ze

L − 2

(1 − α)(2 − α)h2
zkL−1 − Szc

L = δ
L,e
i ,

−Sze
L +
(

S + σc
1 + 2α

α(α + 1)h

)
zc

L − 2

α(1 + α)h2
zkL = δ

L,c
i , (21)

− 2

β(1 + β)h2
zkR +

(
S + σc

1 + 2β

β(β + 1)h

)
zc

R − Sze
R = δ

R,c
i , (22)

−Szc
R +
(

S + σe
3 − 2β

(1 − β)(2 − β)h

)
ze

R − 2

(1 − β)(2 − β)h2
zkR+1 = δ

R,e
i .

We now want to prove that all the coefficients of z corresponding to the interior subdomain, that is, z j with kL � j � kR, 
are O (h). The lines (21) and (22) can be rewritten:(

S + σc
1 + 2α

α(α + 1)h

)
zc

L = 2

α(1 + α)h2
zkL + Sze

L + δ
L,c
i ,(

S + σc
1 + 2β

β(β + 1)h

)
zc

R = 2

β(1 + β)h2
zkR + Sze

R + δ
R,c
i .

Because we have proved that 
∥∥A−1

∥∥∞ is bounded independently of h we can write that ze
L , zc

L, zc
R and ze

R are all O (1). 
We also know, since the matrix A is monotone, that all the coefficients z j are positive. Consequently, zkL and zkR are O (h). 
Now, if we sum the lines corresponding to columns kL + 1 to kR − 1 we get:

zkL+1 − 2

1 + α
zkL + σch

α

1 + α
zc

L + zkR−1 − 2

1 + β
zkR + σch

β

β + 1
zc

R =
kR−1∑

i=kL+1

h2δ
j
i .

Then

zkL+1 + σch
α

1 + α
zc

L + zkR−1 + σch
β

β + 1
zc

R = 2

1 + α
zkL + 2

1 + β
zkR +

kR−1∑
h2δ

j
i ,
i=kL+1
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from which we infer that zkL+1 and zkR−1 are O (h). Similarly, doing successive sums, we prove that all the coefficients z j
with kL � j � kR are O (h). We would prove similarly the same result for the other coefficients z j with 1 � j � kL − 1 or 
kR + 1 � j � N but for the sake of brevity we do not write the proof here.

We eventually conclude that all the coefficients of the row i of A−1 at the exception of ze
L , zc

L, zc
R and ze

R are of order 
O (h), without any coefficient of the type 1

α , 1
1−α , 1

β
or 1

1−β
that may be singular if α (resp. β) tend to 0 or 1 and lead to 

instabilities in the convergence. Consequently the array containing the punctual difference between the numerical solution 
and the exact solution on each discretization point, which is equal to the product of the array of the truncation errors on 
each point by A−1, is of order O (h2), which ensures the second-order accuracy in L∞-norm of the method.

4. Convergence result for the one-dimensional dynamical model

In Subsection 4.1 we rewrite the linear problem to solve as an interface problem. Then, in Subsection 4.2, we prove 
that in one dimension the matrix appearing in the formulation of the interface problem is symmetric and that its spectral 
radius is bounded by one. Theses properties are crucial to prove the stability of the numerical method, and this subsection 
is the technical core of the proof. Then in Subsection 4.3 we prove that the scheme is converging with first-order accuracy, 
with techniques similar to the proof of existence and uniqueness in Kavian et al. [10]. The geometrical configuration and 
notations are the same as in Section 3, see Fig. 7.

4.1. Formulation of the discrete problem as an interface problem

In order to analyze the convergence of the numerical method to the exact solution to the electropermeabilization model, 
we need to rewrite the linear system as an interface problem. To this purpose we rewrite the whole linear system by 
separating the unknowns in the interior domain from the unknowns in the exterior domain. We denote by ue

g and uc
g the 

respective unknowns on grid points in the exterior and interior domains, and ue
p and uc

p the unknowns on interface points 
in the exterior and interior domains. This leads to⎛

⎜⎜⎝
�e

g 0 �e
p 0

0 �c
g 0 �c

p

�e
g �c

g �e
p �c

p

0 �c
g

C
dt Id �c

p − C
dt Id

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎝

ue
g

uc
g

ue
p

uc
p

⎞
⎟⎟⎟⎠

n+1

=
⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 C

dt Id − Sn − C
dt Id + Sn

⎞
⎟⎠
⎛
⎜⎜⎜⎝

ue
g

uc
g

ue
p

uc
p

⎞
⎟⎟⎟⎠

n

+
⎛
⎜⎝

g̃
0
0
0

⎞
⎟⎠ . (23)

The two first block lines represent the discretization of the Laplacian operator on the exterior and interior grid points. 
�e

g and �e
p are the block matrices corresponding to the discretization of the Laplacian in the exterior subdomain, and �c

p

and �c
g the block matrices corresponding to the discretization of the Laplacian in the interior subdomain. Remark that �e

g

and �c
g are invertible since they correspond to the discretization of the Laplacian on grid points in the exterior and interior 

domain. The source term g̃ contains the terms accounting for boundary conditions.
The third block line represents the discretization of the flux equality across the interface. More precisely,

�e
gue

g + �e
pue

p = σe∂nue,

�c
guc

g + �c
puc

p = −σc∂nuc,

where ∂nue and ∂nuc are vectors containing the discretization of the normal derivative to the interface respectively in the 
exterior and interior domains. The last block line represents the evolution of the jump of the solution across the interface. 
Sn is the diagonal matrix containing the values of (S)n

i, j,γ at each interface point.
Using the invertibility of �e

g and �c
p we write

ue
g = −(�e

g)
−1(�e

pue
p − g̃),

uc
g = −(�c

g)
−1�c

puc
p.

Injecting these expressions in the discrete approximations of fluxes yields

σe∂nue = −�e
g(�

e
g)

−1(�e
pue

p − g̃) + �e
pue

p,

σc∂nuc = �c
g(�

c
g)

−1�c
puc

p − �c
puc

p,

and we define the matrices �c, �e and �0 as

σc�c = �c
g(�

c
g)

−1�c
p − �c

p,

σe�e = −�e
g(�

e
g)

−1�e
p + �e

p,

σe�0 = �e
g(�

e
g)

−1.
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Note that �c and �e correspond to discrete versions of the Dirichlet-to-Neumann operators given in Kavian et al. We have

σe�0 g̃ + σe�eue
p + σc�cuc

p = 0. (24)

We do not write the proof here for the sake of brevity, but one can prove that �e is invertible. Let us notice also that 
the matrix σe�e + σc�c is invertible. Indeed, it is the linear application that associates to a vector wp representing the 
values at the interface points (both exterior and interior, assuming that there is no discontinuity across the interface for 
these values), the jump of the exterior and interior normal derivatives to the interface of the solution to the linear problems

�c
g wc

g = −�c
p wp,

�e
g we

g = −�e
p wp.

Consequently, the matrix 
(

Id + σc
σe

�−1
e �c

)
= 1

σe
�−1

e

(
σe�e + σc�c

)
is also invertible. Therefore, using (24) and denoting 

[u] = ue
p − uc

p we write

ue
p = 1

σe
�−1

e (−σe�0 g̃ + σc�cuc
p),

uc
p = ue

p − [u] = −σc

σe
�−1

e �cuc
p + �−1

e �0 g̃ − [u].
Therefore

uc
p =

(
Id + σc

σe
�−1

e �c

)−1(
−[u] + 1

σe
�−1

e �0 g̃

)
. (25)

The matrix −(Id + σc
σe

�−1
e �c

)−1
is the linear application that associates to an array [v], representing a jump across the 

interface, the array vc
p representing the interior values at the interface, satisfying the linear problem:

⎛
⎜⎝�e

g 0 �e
p 0

0 �c
g 0 �c

p

�e
g �c

g �e
p �c

p

⎞
⎟⎠
⎛
⎜⎜⎜⎝

ue
g

uc
g

ue
p

uc
p

⎞
⎟⎟⎟⎠=

⎛
⎝ 0

0
0

⎞
⎠ ,

with ve
p − vc

p = [v].
The temporal evolution of [u] can be expressed as

C

dt
[u]n+1 − σc�cuc

p =
(

C

dt
Id − Sn

)
[u]n. (26)

The evolution of [u] can be rewritten using formula (25) as(
Id + dt

C
σc�c

(
Id + σc

σe
�−1

e �c

)−1
)

[u]n+1 =
(

Id − dt

C
Sn
)

[u]n + dt F , (27)

with F = −σc
C �c

(
Id + σc

σe
�−1

e �c

)−1
�−1

e �0 g̃ .

In the following, for the sake of brevity, we will note

M =
(

Id + dt

C
σc�c

(
Id + σc

σe
�−1

e �c

)−1
)−1

.

The relationship (27) can thus be re-written

[u]n+1 = M

(
Id − dt

C
Sn
)

[u]n + dt M F . (28)

Proposition 4.1. Problem (23) and problem (28) are equivalent.

Note that ρ(Id − dt
C Sn) < 1 if |1 − dt

C S| < 1 for all values of (S)i, j,γ with γ = E, W, S, N, which is true notably if dt <

2 C
SL+S ir

.
The expression

[u]n+1 = M

(
Id − dt

Sn
)

[U ]n + dt F ,

C
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is linearly equivalent to the initial linear system (26), which is consistent with the equations to solve. Therefore, by injecting 
the exact solution ũ in the latter formula, one can write

[ũ](tn+1,x) = M

(
Id − dt

C
S(X(tn, x))

)
[ũ](tn, x) + dt F + O (dt) , ∀x ∈ �.

It is proven in [10] that the exact solution is bounded in C([0, T ], L2(�)), therefore we deduce that ‖F‖2 = O (1).

4.2. Preliminary results on the matrix properties

Lemma 4.2. In one-dimension, the matrix �c
(
Id + σc

σe
�−1

e �c
)−1

is symmetric and all its eigenvalues are positive.

Proof. We begin by proving that �c is symmetric and has only positive eigenvalues, i.e.

∀vp, wp, (�c vp, wp) = (�c wp, vp) and (�c vp, vp) ≥ 0.

We denote by vL, and wL two values on xL, vR and wR two values on xR. Let vg and wg be the solutions to the linear 
problems

�c
g vg = −�c

p

(
vL
vR

)
and �c

g wg = −�c
p

(
wL
wR

)
.

The arrays −�c vp and −�c wp represent the discrete normal derivatives at the interface. We thus can write:

�c
g vg + �c

p vp = −�c vp and �c
g wg + �c

p wp = −�c wp.

In one dimension we can write:

vg =

⎛
⎜⎜⎜⎝

vkL

vkL+1
...

vkR

⎞
⎟⎟⎟⎠ , and wg =

⎛
⎜⎜⎜⎝

wkL

wkL+1
...

wkR

⎞
⎟⎟⎟⎠ .

We sum over every grid point i inside the interior domain the product (�v)i wi where (�v)i is the discrete Laplacian 
of v defined by (�c

g vg + �c
p vp)i . For the indices kL and kR, the Laplacian term is also multiplied by (α + 1)/2 or (β + 1)/2

in order to obtain the same denominator as the interior terms, which will simplify the computations. Then we make a 
summation by parts.

(vkL+1 − vkL)

h2
wkL − (vkL − vL)

αh2
wkL +

kR−1∑
i=kL+1

(vi+1 − vi) − (vi − vi−1)

h2
wi

+ (vR − vkR)

βh2
wkR − (vkR − vkR−1)

h2
wkR = 0,

− (vkL − vL)

αh2
wkL −

kR−1∑
i=kL

(vi+1 − vi)

h2
(wi+1 − wi) + (vR − vkR)

βh2
wkR = 0.

We use the fact that the discrete Laplacian is zero at points xkL and xkR :

vR − vkR

βh
− vkR − vkR−1

h
= 0,

vkL+1 − vkL

h
− vkL − vL

αh
= 0.

Furthermore, the discrete second order normal derivative to the interface at points xL and xR are

(∂n v)L = −(∂x v)L = 1 + 2α

α(α + 1)h
(vkL − vL) − α

(1 + α)h
(vkL+1 − vkL),

(∂n v)R = (∂x v)R = 1 + 2β

β(β + 1)h
(vR − vkR) − β

(β + 1)h
(vkR − vkR−1).

With the help of these latter equations we prove that

(∂n v)L = − (vkL − vL)

αh
, (29)

(∂n v)R = (vR − vkR) . (30)

βh
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Thus,

(∂n v)L

h
wkL + (∂n v)R

h
wkR =

kR−1∑
i=kL

(vi+1 − vi)

h2
(wi+1 − wi). (31)

We can consequently write

(∂n v)L

h
(wL − αh(∂n w)L) + (∂n v)R

h
(wR − βh(∂n w)R) =

kR−1∑
i=kL

(vi+1 − vi)

h2
(wi+1 − wi),

which leads to

(∂n v)L

h
wL + (∂n v)R

h
wR =

kR−1∑
i=kL

(vi+1 − vi)

h2
(wi+1 − wi) + α(∂n v)L(∂n w)L + β(∂n v)R(∂n w)R. (32)

We conclude that

(∂n v)L

h
wL + (∂n v)R

h
wR = (∂n w)L

h
vL + (∂n w)R

h
vR,

which is equivalent to

(�c vp, wp) = (�c wp, vp),

and therefore �c is symmetric. Furthermore, taking wi = vi for all i in (32) we obtain (�c vp, vp) ≥ 0 which proves that �c
has only positive eigenvalues. We would prove similarly the same result for �e.

Now we consider again the matrix �c

(
Id + σc

σe
�−1

e �c

)−1
. Let v be an array of the same size as [u]. We denote by 

w =
(

Id + σc
σe

�−1
e �c

)−1
v .

�c

(
Id + σc

σe
�−1

e �c

)−1

v · v = �c

(
Id + σc

σe
�−1

e �c

)−1

v ·
(

Id + σc

σe
�−1

e �c

)(
Id + σc

σe
�−1

e �c

)−1

v,

= �c w ·
(

Id + σc

σe
�−1

e �c

)
w,

= �c w · w + σc

σe
�e(�

−1
e �c w) · (�−1

e �c) ≥ 0.

4.3. Convergence result in one dimension

We address the convergence of the numerical solution to the exact solution to the non-linear problem. We denote by 
[u]n the vector containing the values of the jump of the exact solution at the interface points at time tn , and [u]n

h the vector 
containing the values of the jump of the numerical solution at the same points and same time. Xn and Xn

h are defined 
similarly as the exact and approximated vector values of X at these interface points. We denote the error in discrete L2

norm at time step n by En = ∥∥[u]n − [u]n
h

∥∥
2. Because our method is formulated in the finite differences formalism, we need 

to assume that the solutions to the electropermeabilization model considered are smooth enough to have the truncation 
errors tending to zero when the grid spacing h tends to zero.

Lemma 4.3. If dt < τep , then for all n ≥ 0 and on each interface point, we have 0 ≤ Xn
h ≤ 1.

Proof. The value of Xn+1
h is computed from Xn

h and [u]n
h with a first order explicit Euler scheme. The formula reads

Xn+1
h = Xn

h + dt max

(
β([u]n

h) − Xn
h

τep
,
β([u]n

h − Xn
h

τres

)
.

We use the notation

Xn+1
h = Xn

h + dt
β([u]n

h) − Xn
h

τn
,

with τn = τep or τres depending on the sign of β([u]n) − Xn .
h h
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We define (Xn
h)− = max(0, −Xn

h) and multiply the latter equation by (Xn+1
h )− + (Xn

h)− . We obtain:

(
(Xn+1

h )− + (Xn
h)−
) Xn+1

h − Xn
h

dt
=
(
(Xn+1

h )− + (Xn
h)−
) β([u]n

h) − Xn
h

τn
,

Xn+1
h (Xn+1

h )− − Xn
h(Xn

h)−

dt
=
(
(Xn+1

h )− + (Xn
h)−
) β([u]n

h) − Xn
h

τn
+ Xn

h(Xn+1
h )−

dt
− Xn+1

h (Xn
h)−

dt
,

− ((Xn+1
h )−)2 − ((Xn

h)−)2

dt
=
(
(Xn+1

h )− + (Xn
h)−
) β([u]n

h)

τn
− Xn

h(Xn
h)−

τn
+ Xn

h(Xn+1
h )−

(
1

dt
− 1

τn

)
− Xn+1

h Xn
h

dt
.

The terms on the first line of the right hand-side are positive, notably because β � 0. We assume that dt � τn . If Xn
h > 0, 

or if Xn
h < 0 and Xn+1

h < 0 then the term on the second line of the right hand-side is also positive and (Xn+1
h )− < (Xn

h)− . 
On the contrary, if Xn

h > 0 and Xn+1
h > 0 then one has also (Xn+1

h )− < (Xn
h)− . Consequently the sequence ((Xn

h )−)n�0 is 
decreasing. Because (Xn

h)− � 0 for all n � 0 and (X0
h )− = 0 one concludes that Xn

h � 0 for all n � 0.
With the same reasoning, by considering (Xn

h − 1)+ = max(0, Xn
h − 1) and using the fact that β − 1 � 0, we can prove 

that Xn
h � 1 for all n � 0.

Lemma 4.4. For all T > 0 there exists a constant K (T ) depending on T , β and τep but not on other parameters, such that on every 
interface point the following inequality is satisfied for all 0 � n � T

dt

sup
i�n

∣∣∣Xi − Xi
h

∣∣∣� K (T ) sup
i�n

∣∣∣[u]i − [u]i
h

∣∣∣+ O (dt). (33)

Proof. The function β ′ is bounded on ]−∞, +∞[, and we denote by β ′
max = sup

∣∣β ′(x)
∣∣.∣∣∣Xn+1 − Xn+1

h

∣∣∣� ∣∣Xn − Xn
h

∣∣+ ∣∣εn
2

∣∣
+ dt

∣∣∣∣max

(
β([u]n) − Xn

τep
,
β([u]n) − Xn

τres

)
− max

(
β([u]n

h) − Xn

τep
,
β([u]n

h) − Xn

τres

)∣∣∣∣
+ dt

∣∣∣∣max

(
β([u]n

h) − Xn

τep
,
β([u]n

h) − Xn

τres

)
− max

(
β([u]n

h) − Xn
h

τep
,
β([u]n

h) − Xn
h

τres

)∣∣∣∣ .
Let us observe that∣∣∣∣max

(
β([u]n) − Xn

τep
,
β([u]n) − Xn

τres

)
− max

(
β([u]n

h) − Xn

τep
,
β([u]n

h) − Xn

τres

)∣∣∣∣�
∣∣β([u]n) − β([u]n

h)
∣∣

τep

�
∥∥β ′∥∥∞

∣∣[u]n − [u]n
h

∣∣
τep

,

and similarly∣∣∣∣max

(
β([u]n

h) − Xn

τep
,
β([u]n

h) − Xn

τres

)
− max

(
β([u]n

h) − Xn
h

τep
,
β([u]n

h) − Xn
h

τres

)∣∣∣∣�
∣∣Xn − Xn

h

∣∣
τep

.

Consequently∣∣∣Xn+1 − Xn+1
h

∣∣∣� (1 + dt

τep

)∣∣Xn − Xn
h

∣∣+ dt

∥∥β ′∥∥∞
τep

∣∣[u]n − [u]n
h

∣∣+ ∣∣εn
2

∣∣ .
Now we use a discrete Gronwall lemma to obtain

∣∣Xn − Xn
h

∣∣� exp

(
n dt

τep

)∣∣∣X0 − X0
h

∣∣∣+ n−1∑
i=0

exp

(
n dt − i dt

τep

)(
dt
∥∥β ′∥∥∞
τep

∣∣∣[u]i − [u]i
h

∣∣∣+ ∣∣∣εi
2

∣∣∣
)

,

�
n−1∑
i=0

exp

(
T

τep

)(
dt
∥∥β ′∥∥∞
τep

∣∣∣[u]i − [u]i
h

∣∣∣+ ∣∣∣εi
2

∣∣∣
)

,

sup
i�n

∣∣∣Xi − Xi
h

∣∣∣� ∥∥β ′∥∥∞
T

τep
exp

(
T

τep

) n−1∑
i=0

dt
∣∣∣[u]i − [u]i

h

∣∣∣+ n−1∑
i=0

exp

(
T

τep

)∣∣∣εi
2

∣∣∣ ,
from which we deduce the result of the lemma.
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Lemma 4.5. The sequences 
∥∥[u]n

h

∥∥
2 and 

∥∥[u]n
h

∥∥∞ are bounded independently of n and h in one-dimension if 
∣∣∣1 − dt

C S
∣∣∣ < 1 for all 

values of (S)i, j,γ with γ = E, W, S, N. This condition is satisfied for instance if we take dt < 2 C
SL+S ir

.

Proof. We first have to prove that 
∥∥[u]n

h

∥∥
2 is bounded independently of n and h.

Because of Lemma 4.2, the matrix �c

(
Id + σc

σe
�−1

e �c

)−1
is symmetric and has only positive eigenvalues. As we have 

proved in Lemma 4.3 that 0 � X � 1 then S > 0. Therefore M =
(

Id + dt
C σc�c

(
Id + σc

σe
�−1

e �c

)−1
)−1

is also symmetric 

and:
‖M‖2 = ρ(M) � 1.

Using (28) we write∥∥∥[u]n+1
h

∥∥∥
2
� ρ(M)

∥∥[u]n
h

∥∥
2 + dt ρ(M)‖F‖2 ,

�
∥∥∥[u]0

h

∥∥∥
2
+ dt

n∑
i=0

‖F‖2 �
∥∥∥[u]0

h

∥∥∥
2
+ T ‖F‖2 .

Therefore 
∥∥[u]n

h

∥∥
2 is bounded independently of n and h. In one-dimension the interface values are only two, therefore the 

boundedness in L2 norm implies the boundedness in L∞ norm.

Proposition 4.6. If the ratio dt/h is kept constant, if dt < τep and 
∣∣∣1 − dt

C S
∣∣∣< 1 for all values of (S)i, j,γ with γ = E, W, S, N, then in 

one-dimension the numerical method converges with first-order accuracy to the exact solution.

Proof. Let us recall the formula used to compute [u]n+1
h and Xn+1

h from [u]n
h and Xn

h :

[u]n+1
h = M

[(
Id − dt

C
S(Xn

h)

)
[u]n

h + dt F

]
, (34)

Xn+1
h = Xn

h + dt max

(
β([u]n

h) − Xn
h

τep
,
β([u]n

h) − Xn
h

τres

)
. (35)

We know that the exact solution satisfies

[u]n+1 = M

[(
Id − dt

C
S(Xn)

)
[u]n + dt F

]
+ εn

1, (36)

with εn
1 related to the truncation error of the equation. If we assume that the ratio dt/h is kept constant, we know that 

εn
1 = O (dt2) because the discretization in first-order accurate in time.

[u]n+1 − [u]n+1
h = M

[(
Id − dt

C
S(Xn)

)
[u]n + dt F −

(
Id − dt

C
S(Xn

h)

)
[u]n

h + dt F

]
+ εn

1,

= M([u]n − [u]n
h) − dt

C
M
(

S(Xn)[u]n − S(Xn
h)[u]n

h

)+ εn
1,∥∥∥[u]n+1 − [u]n+1

h

∥∥∥
2
�
∥∥[u]n − [u]n

h

∥∥
2 + dt

C
(SL + S ir)

∥∥[u]n − [u]n
h

∥∥
2

+ dt

C

∥∥[u]n
h

∥∥∞
∥∥S(Xn) − S(Xn

h)
∥∥

2 + ∥∥εn
1

∥∥
2 ,∥∥∥[u]n+1 − [u]n+1

h

∥∥∥
2
�
(

1 + dt

C
(SL + S ir)

)∥∥[u]n − [u]n
h

∥∥
2

+ dt

C
K (T )S ir

∥∥[u]n
h

∥∥∞ sup
i�n

∥∥[u]n − [u]n
h

∥∥
2 + ∥∥εn

1

∥∥
2 + O (dt2).

∥∥∥[u]n+1 − [u]n+1
h

∥∥∥
2
�
(

1 + dt

C
K (T )S ir sup

i�n

∥∥∥[u]i
h

∥∥∥∞ + dt

C
(SL + S ir)

)
sup
i�n

∥∥∥[u]i − [u]i
h

∥∥∥
2
+ ∥∥εn

1

∥∥
2 + O (dt2),

sup
i�n+1

∥∥∥[u]i − [u]i
h

∥∥∥
2
�
(

1 + dt

C
K (T )S ir sup

i�n

∥∥∥[u]i
h

∥∥∥∞ + dt

C
(SL + S ir)

)
︸ ︷︷ ︸

˜

sup
i�n

∥∥∥[u]i − [u]i
h

∥∥∥
2
+ ∥∥εn

1

∥∥
2 + O (dt2).
1+dt K (T )
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Table 1
Parameters set to fit to the results given by [19,5]. (EP stands for electropermeabilization, and EPd stands for electropermeabilized.)

Variable Symbol Value Unit

Biological parameters:
Extracellular conductivity σe 5 S/m
Intracellular conductivity σc 0.455 S/m
Capacitance C 9.5 × 10−3 F/m2

Membrane surface conductivity SL 1.9 S/m2

Cell radius r 50 μm
Membrane thickness δ 5 nm

Specific parameters of the model:
EP threshold V rev 1,5 V
EP switch speed kep 40 V−1

EP characteristic time τep 1 × 10−6 s
Resealing characteristic time τres 1 × 10−3 s
EPd membrane surface conductivity S ir 2.5 × 108 S/m2

Fig. 8. Numerical electric field and permeabilization of a cell with an irregular shape. The electric field lines are visualized with colored lines while the 
membrane conductivity is depicted by a white to black scale and the thickness of the membrane. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

With a discrete Gronwall lemma, we deduce that

sup
i�n

∥∥∥[u]i − [u]i
h

∥∥∥
2
� eT K̃ (T )

∥∥∥[u]0 − [u]0
h

∥∥∥
2︸ ︷︷ ︸

=0

+
n∑

i=0

e(ndt−idt)K̃ (T )
(∥∥∥εi

1

∥∥∥
2
+ O (dt2)

)
︸ ︷︷ ︸

=O (dt)

.

We conclude that the method converges with a first-order accuracy.

5. Numerical validations

In this section, we study numerically the convergence of the method in two dimensions, for both static and dynamic 
cases, with and without electropermeabilization (corresponding to non-linear and linear cases respectively). For an analysis 
of the “physical” behavior of the model we refer to the numerical studies in [10].

5.1. Parameters used in the simulations

Table 1 presents the parameters used for the following simulations. Some of them are biological parameters, chosen in 
accordance with reference studies in the literature, the other ones are specific to the model described in Subsection 1.2. 
Fig. 8 provides an example of results that are usually obtained in our simulations, for an irregularly shaped cell in this 
case. The electric field is visualized with lines while the membrane conductivity is depicted by a white to black scale and 
the thickness of the membrane. Note that this thickness is only a handful visualization artifact to locate the permeabilized 
regions of the membrane.



M. Leguèbe et al. / Journal of Computational Physics 292 (2015) 114–140 135
Fig. 9. Numerical estimation of the order of accuracy of the method. The analytic solution to the linear problem is calculated in concentric circular domains. 
The restriction of this solution to the boundary of the computational domain (dashed line) provides the Dirichlet data for the numerical solution.

5.2. Convergence study for the linear static problem

One can express an analytic solution of the linear problem in the case of a circular cell or radius R1 , centered on the 
origin, inside a concentric domain � of radius R2, R2 > R1, with a constant conductivity S = SL. Let g = E R2 cos θ be the 
source with E tuning the amplitude of the electric field.

The analytic solution writes

∀ r > 0, ∀ θ ∈ [0,2π ], U (r, θ) =
{

Ue(r) cos θ in Oe,

Uc(r) cos θ in Oc,
(37)

where

Ue(r) = αer + βer−1,

Uc(r) = αcr,

with αe, βe, and αc given by

αc =
((

σc

SL R1
+ 1 + σc

σe

)
R2 +

(
σc

SL R1
+ 1 − σc

σe

)
R2

1

R2

)−1

g,

αe = 1

2

(
σc

SL R1
+ 1 + σc

σe

)
αc,

βe = 1

2

(
σc

SL R1
+ 1 − σc

σe

)
αc R2

1.

This solution is used as a Dirichlet condition on the boundary of our simulation box, which is a square contained in the 
disk of radius R2, and containing the disk of radius R1 (cf. Fig. 9).

The error between the result u of our simulation and the exact solution U is measured on both grid and interface points. 
In order to compute a discretized L2 norm on the interface, the latter is considered linear between intersection points. If 
Mm−1, Mm and Mm+1 designate three consecutive interface points, the length element �lm associated to the point Mm is 
chosen as:

�lm = 1

2
(‖Mm+1 − Mm‖ + ‖Mm − Mm−1‖) .

The error on the interface is defined by:

Ep(u − U ) =
⎛
⎝ Nl∑

m=0

�lm[um − U (xm)]2

⎞
⎠1/2

, (38)

where Nl is the number of unknowns at interface.
For grid points, a special treatment is needed for points neighboring the interface for a second order L2 norm calculation. 

Indeed, as shown in Fig. 10, considering the solution constant on a virtual cell of size hx × hy around each grid point is not 
valid, as these cells may intersect with both inner and outer domains. Let A c

i j (resp. A e
i j ) be the area of the part of the cell 

which is in Oc (resp. Oe), which can be null if the cell is entirely in one domain. If the point Mij is located in Oc (resp. 
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Fig. 10. L2 norm calculation for grid points. ue
i j is an extrapolation of the solution from the values of ue in Oe to the point Mij in Oc , involving interface 

points as well.

Fig. 11. Error vs relative grid spacing h = 1/Nx = 1/N y for the linear static case, with Nx and N y being the number of points in the x and y directions.

Oe), the solution in the exterior domain Oe (resp. Oc), as well as the solution U , are extrapolated on Mij , with respective 
values ue

i j and U e
i j (resp. uc

i j and U c
i j ).

The error on grid points is then defined by:

Eg(u − U ) =
⎛
⎝∑

i, j

(ue
i j − U e

i j)
2A e

i j + (uc
i j − U c

i j)
2A c

i j

⎞
⎠1/2

. (39)

The total error reads:

E(u − U ) = Eg(u − U ) + Ep(u − U ). (40)

For the static problem, a second-order of convergence is achieved, as presented in Fig. 11.

5.3. Convergence study for the linear dynamic problem

5.3.1. Case of a circular cell
The solution of the dynamical problem has the same form as the solution (37) to the static equation, with time-

dependent coefficients:

Ue(r, t) = αe(t)r + βe(t)r
−1,

Uc(r, t) = αc(t)r.

Then the jump on the interface [U ] satisfies the following ordinary differential equation (ODE):

C
d [U ](t) + SL[U ](t) = −σcαc(t). (41)

dt
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Fig. 12. Error vs relative grid spacing h for the linear dynamic case, with a circular cell. The error was computed after application of a 100 μs pulse. The 
ratio dx/dt was kept constant to 40.

Using the continuity of the flux (1d) we infer that:

αc(t) = K1 g(t) + K2[U ](t),

αe(t) =
(

R2

R2
1 + R2

2

+ 2R2
σc

σe
K

)
g(t) + σc

σe

K

R1
[U ](t),

βe(t) =
(

R2

R2
1 + R2

2

− 2R2
σc

σe
K

)
R2

1 g(t) − σc

σe

K

R1
[U ](t),

with

K = −σe

R2
1(σe − σc) + R2

2(σe + σc)
, K1 = 2R2 K , K2 = R2

1 + R2
2

R1
K .

Therefore the jump is given by:

[U ](t) =
⎛
⎝[U ](0) + σc K1

C

t∫
0

g(s)exp

(
SL − σc K2

C
s

)
ds

⎞
⎠exp

(
− SL − σc K2

C
t

)
,

from which we infer all the coefficients.
The error is computed at the final time of the simulation T f = 100 μs, similarly as for the static equation. Fig. 12 shows 

that a second-order of convergence is obtained for this case as well.

5.3.2. Case of more complex geometries
Here we study the empirical convergence in the case of more complex geometries:

• an oblong interface, but with sharp corners, defined as the intersection of the two circles

C1 = {(x, y),

√
x2 + (y + 50 μm)2 = 75 μm} C2 = {(x, y),

√
x2 + (y − 50 μm)2 = 75 μm}

in the computational domain [−100 μm, 100 μm]2.
• a flower-like cell interface defined by:

ϕ(r, θ) = r − r0 − 0.2 sin(ωθ),

with r =√(x − xc)2 + (y − yc)2, θ = arctan((y − yc)/(x − xc)), xc = yc = 0.2
√

20 × 50 μm, ω = 5, r0 = 0.8 × 50 μm.

In both cases, the empirical convergence rate is computed by comparing a refined numerical solution, obtained with 
301 × 301 grid points, to numerical solutions obtained with a number of grid points ranging from 21 × 21 to 101 × 101. 
The ratio dt

dx is kept constant, equal to τep. The final time of the simulation is T f = τep
2 . Eh is only computed on grid points, 

since interface points may not match on both grids. The numerical solution with 201 × 201 grid points and the empirical 
convergence rate are presented on Fig. 13 for the ellipsoidal like interface, and on Fig. 14 for the flower-like interface.

We observe a second order convergence for the flower-like interface, and a first-order convergence for the interface 
with sharp corners. The first-order convergence in the latter case is coherent with the fact that a first-order discretization 
in time is used. However, since it is not observed for the other geometries, it can also be correlated with the first-order 
discretization used at the corners. This is an effect not observed in the test-cases with sharp corners in [3], where a 
second-order convergence is always observed, but the loss of accuracy of the first-order discretization may be amplified 
here by the numerous time iterations. In the case of cell interfaces, such sharp corners are not likely to be observed.
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Fig. 13. (a): Numerical solution for 201 × 201 grid points, (b): Error Eh versus grid spacing h.

Fig. 14. (a): Numerical solution for 201 × 201 grid points, (b): Error Eh versus grid spacing h.

5.4. Convergence study with electropermeabilization

When electropermeabilization is taken into account, i.e. when the conductivity S depends on the TMP difference [U ], we 
are not able to compute an analytic solution. In order to compute the order of convergence p of our method, a solution uh
computed with a grid spacing h is compared to uh/2, computed with a refined grid spacing h/2. The error Eh is then of the 
order of hp , with:

Eh =
∥∥uh − uh/2

∥∥
L2∥∥uh/2

∥∥
L2

� ‖uh − ū‖L2∥∥uh/2
∥∥

L2

+
∥∥uh/2 − ū

∥∥
L2∥∥uh/2

∥∥
L2

= O(hp) + O

(
hp

2p

)
.

Eh is only computed on grid points, since interface points may not match on both grids.
On Fig. 15 are presented the convergence results in the static and dynamic case. In the static case, the numerical solution 

is obtained with a pseudo-time iterative scheme described in [10]. In the dynamic case, we perform two studies, one with 
dt = τep ×dx, and another one with dt = 10 ×τep ×dx2. We take kep = 10 rather than 40, because the electropermeabilization 
happens early with the choice kep = 10, helping us to perform the convergence study in time. Eh is measured at the final 
time T f = τep

2 in the first case, and at the time T f = τep
10 in the second case, to avoid too long computations due to the 

small values of dt . In the second case, Eh is computed in maximum norm to show that the computed almost second-order 
convergence is satisfied even near the interface, which would be not so evident if it was measured in L2 norm. In the first 
case, we observe an almost first-order convergence, which is coherent with the fact that the temporal integration scheme is 
only order one. In the second case, the computed rate of convergence is slightly inferior to second-order, which agrees with 
the fact that we use a dt proportional to dx2.

6. Conclusion

In this paper we have presented a new finite differences method to simulate electropermeabilization models based on 
elliptic PDE’s describing the evolution of the electric potential in conducting media. It is a Cartesian grid method based 
on the accurate discretization of the fluxes at the interface between the exterior domain and the cell, representing the 
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Fig. 15. Error Eh versus grid spacing h, in both static (a) and dynamic case (b): dt = τep × dx and (c) dt = 10 × τep × dx2.

cell membrane. This accurate discretization is performed with additional interface unknowns, located at the intersection 
between the interface and the grid axes. The use of interface unknowns is particularly relevant in the context of electro-
permeabilization, because the jump in electric potential across the cell membrane is explicitly given in the models and is 
measured by experiments.

We have studied the stability and convergence of the method in one dimension, and proved that in one dimension, it 
converges with a first-order accuracy for the dynamic non-linear problem, and with a second-order accuracy for the linear 
stationary problem. The first order-accuracy in the non-linear case is due to the fact that a first-order scheme is employed 
for the time evolution. Finally we have presented numerical results in two dimensions corroborating the theoretical study.

In the future, we intend to use this method to perform simulations of the electropermeabilization of high numbers of 
cells in the same computational domain. To this purpose we will develop a parallelized version of the method, with the help 
of the PETSc library. Furthermore, we plan to modify the method to take into account a possible variation of the volume 
of the electropermeabilized cells, which is highlighted by experiments. This will be handled by computing the temporal 
evolution of the level-set function, following the equation of evolution for the interface that will be added to the model.
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