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H I G H L I G H T S

� We differentiate conductive and permeable states of a cell membrane.
� We follow concentrations of markers uptaken by permeabilized cells.
� Numerical methods and a 3D code have been specifically written to provide results.
� in vitro experimental results validate qualitatively our model.
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a b s t r a c t

The aim of this paper is to present a new model of in vitro cell electropermeabilization, which describes
separately the conducting state and the permeable state of the membrane submitted to high voltage
pulses. We first derive the model based on the experimental observations and we present the numerical
methods to solve the non-linear partial differential equations. We then present numerical simulations
that corroborate qualitatively the experimental data dealing with the uptake of propidium iodide (PI)
after millipulses. This tends to justify the validity of our modeling. Forthcoming work will be to calibrate
the parameters of the model for quantitative description of the uptake.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Electroporation is a destructuration of a cell membrane organiza-
tion leading to an increase of permeability to molecules that usually
do not diffuse across the membrane. Even though the increase of
membrane permeability is a consequence of the electric shock, the
internalization of molecules into the cytoplasm cannot be described by
the conducting state of the membrane. More precisely, it has been
experimentally observed that the cell membrane may remain perme-
able several minutes after the electric pulses delivery, while experi-
ments by Benz et al. (1979) have reported that the membrane
conductivity almost recovers its steady value within several micro-
seconds after the end of the pulse. Therefore it is important, from
the modeling point of view, to distinguish the electric phenomenon,

which leads to the increase of membrane conductivity, from the
transport of molecules across the permeable membrane. This trans-
port can be obtained by different ways, depending on the molecules:
small molecules, which do not interact neither with the membrane
nor with the cytoskeleton, can diffuse into the cytoplasm, while active
transport (such as ramping process on the membrane or transport due
to electrophoretic forces) are needed to make large molecules such as
DNA enter the cell.

An electrodiffusion model was already proposed and studied by
Smith andWeaver (2012), but it is restricted to the 1D case and the
coupling between electroporation and transport across the mem-
brane was not considered. Here we provide a model that describes
the in vitro process of the internalization of extracellular molecules
into the cell, thanks to the application of high amplitude pulses.
Our model is based on a non-linear system of partial differ-
ential equations, and the numerical results are obtained for
3-dimensional cells.

Even though it is well-known by experimenters that the high
conducting state and the high permeable state of the membrane
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do not coincide, the current models of electroporation do not
distinguish these two states. For instance, the currently most
achieved model of DeBruin and Krassowska (1999), Neu and
Krassowska (1999, 2006), and Smith et al. (2004) only describes
the electrical potential in the cell. Their modeling leads to
membrane conducting state, which lasts several seconds (see
DeBruin and Krassowska, 1999, Fig. 7). Such a duration is smaller
than the permeable state duration observed by experiments with
bleomycin – which still enters the cell several minutes after the
end of the pulse – but much longer than the duration of the
conducting state of the membrane, which stays highly conducting
during several microseconds according to Benz et al. (1979). For all
these reasons, the current models were not satisfactory. In this
paper, we propose a new model, which differentiates the con-
ducting state from the permeable state of the membrane, and we
show that the simulations corroborate the experimental data.

The paper is organized as follows. In the next section, we
present generically the system of partial differential equations,
which will be used to model the cell electropermeabilization.
We then clarify the assumptions on which is based the model, and
we derive the non-linear law that accounts for the change in
the conducting and permeable states of the membrane. We then
present numerical methods that make it possible to simulate
accurately the electric field and the transport of the molecules
from the extracellular domain into the cell cytoplasm. We end by
numerical simulations that corroborate qualitatively the different
experimental observations.

2. Statement of the generic partial differential equations

In this section, we briefly present the main partial differential
equations that describe the phenomenon. Roughly speaking, it
consists of a Poisson equation for the electric potential and a
diffusion-transport equation for the non-permeant molecules.
In Section 3, we will focus on the non-linearity due to the electro-
permeabilization.

2.1. Geometry, notations

The cytoplasm Oc and the extracellular medium Oe are con-
sidered as homogeneous materials with respective conductivities
(see Fig. 1):

σ ¼
σe in Oe;

σc in Oc:

(

We denote by Γ the boundary of Oc which is supposed to be
smooth. Let Ω¼Oe [ Oc [ Γ be the whole domain, and ∂Ω its
boundary. It is worth noting that Γ is assumed to be fixed and thus

we do not consider a free-boundary problem. Variations of the
volume due to change of osmolarity are not in the scope of the
present paper. We refer to Poignard et al. (2011), for more details.

The membrane is thus described by the single interface Γ with
no thickness, and ν designates the unit normal vector to Γ,
outward from Oc. The flux of a function f across Γ is noted as
∂νf jΓ þ or ∂νf jΓ � depending on the side of the interface, respec-
tively Oe for Γ

þ and Oc for Γ
� . We use the following notation for

the jump of a function f across the interface:

½f �Γ ¼ f jΓ þ � f jΓ � :

2.2. Electric potential

The electric potential is governed by the following equations:

Δu¼ 0 in Oc [ Oe; ð1aÞ

σe∂νujΓ þ ¼ σc∂νujΓ � ; ð1bÞ

Cm∂t ½u�ΓþS0ð½u�Γ�u0ÞþSepðt; ½u�ΓÞ½u�Γ ¼ σc∂νujΓ � ; ð1cÞ

uðt; �Þj∂Ω ¼ uimpðt; �Þ; uð0; �Þ ¼ u0; ð1dÞ
where S0 is the resting membrane conductivity, u0 is the resting
potential and uimp is the boundary condition determined by the
pulse. Eq. (1b) corresponds to the continuity of the electric current
through the membrane. Eq. (1c) is a Kirchhoff law, where the
Cm∂t ½u�Γ term represents the capacitive effect of the membrane
and Sepðt; ½u�ΓÞ½u�Γ is the electroporation current.

The description of the conducting state of the membrane is
obtained by imposing a nonlinear law on Sep that will be described
in the next section. Note that the term Sepðt; ½u�ΓÞ½u�Γ corresponds
to the electroporation current of DeBruin and Krassowska (1999):

Iep ¼Nepðt; ½u�ΓÞiepð½u�ΓÞ;
after linearization of the current through one pore iepð½u�ΓÞ.
However, we emphasize that the characteristic time of pore
creation of Neu and Krassowska's model depends on the mem-
brane voltage instead of being intrinsic to the membrane. More-
over pore density Nep is not bounded (DeBruin and Krassowska,
1999) which is hardly defensible from the physical point of view,
and therefore we prefer to change it into a sliding-door model
given in Section 3.

2.3. Diffusion and electric transport of non-permeant molecules

Since the experimental data on electropermeabilization is
mainly based on the internalization of non-permeant molecules
into cells or vesicles, such as propidium iodide (PI)1 or DNA, we
also describe the motion of these molecules around and inside the
cell. This model must take into account the two main modes of
propagation of these molecules: the diffusion for small molecules
such as PI and the electrophoresis for charged molecules such as
DNA. We assume that the electrophoretic forces given by �μe∇u
holds only in the outer medium, with μe being the electrical
motility of the molecule M in Oe. This assumption is plausible
since the electric field in the cytoplasm is very low due to the
shielding effect of the membrane, and since the cytoplasm is
composed of cytoskeleton and organelles, which prevents the
diffusion and the electric transport of large molecules inside
the cell.

We suppose that at the initial time, the concentration of M is
constant and equal to M0 in Oe while it is set to zero in Oc.

Fig. 1. Scheme of the cell embedded in the extracellular domain.

1 PI is a small molecule which is fluorescent inside the cytoplasm of the cell. It
is thus a good fluorescent marker of membrane electropermeabilization.
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Moreover, according to in vitro experiments, the concentration of
M on the boundary ∂Ω of the whole domainΩ is also constant and
equals M0. We denote by de and dc the diffusion constants of the
molecule M in Oe and Oc respectively. The concentration M in the
outer and in the inner media is governed by the following drift–
diffusion equation:

∂tM�deΔM ¼ μe∇ � ðM∇uÞ in Oe;

∂tM�dcΔM ¼ 0 in Oc; ð2aÞ
with the interface conditions on the membrane

de∂νMjΓ þ þμeMjΓ þ ∂νujΓ þ ¼ dc∂νMjΓ þ ; ð2bÞ

Pm½M�Γ ¼ dc∂νMjΓ � ; ð2cÞ

Mjt ¼ 0 ¼M01Oe ; Mj∂Ω ¼M0; ð2dÞ
where Pm is the membrane permeability to the considered
molecule, and will also be described in the next section. In a
similar way as the potential, Eq. (2b) states the flux continuity of M
across the membrane. Eq. (2c), that expresses the discontinuity of
M across G, is a Kedem–Kachalsky type of transmission conditions
(Kargol, 1996).

3. Electro-poration and electro-permeabilization modeling

Modeling both membrane poration and permeabilization con-
sists in deriving equations for the surface membrane conductivity
Sep and the membrane permeability Pm respectively.

We split the membrane alteration into two different phenom-
ena that occur with two distinct dynamics: the pore creation, with
short-term dynamics, and a long-term permeabilization of the
lipid bilayer. This splitting is set to account for two experimental
results that seem to be contradictory. On one hand, the observa-
tions of Benz et al. (1979) and molecular dynamics (MD) simula-
tions (Tarek, 2005; Tieleman, 2004) show that pores shrink within
a few microseconds (even a few nanoseconds for MD simulations)
after pulses are off. On the other hand, it has been reported that
the permeable state lasts several minutes after the pulse delivery
(Rols et al., 1998; Teissié and Ramos, 1998). Therefore we differentiate
the porated state from the permeabilized state, describing the local
degree of poration by X1, and the degree of permeabilization by X2.
The effective porosity and the permeability of cell membranes have
never been measured, unlike for soils as referred by Chapuis and
Aubertin (2003). Actually, the underlying mechanisms of the phenom-
ena and the link between porosity and permeability have not been
explained yet, as described in Section 5.5 of Silve et al. (2014). We thus
choose to refer to X1 and X2 as degrees of porosity and permeability
respectively, in order to distinguish between the standard porosity and
the permeability of soils.

We associate with each state a specific membrane conductivity
and membrane permeability:

� S0 and P0 are the respective membrane conductivity and
permeability to the molecule M at rest.

� S1 and P1 are the constants that represent the membrane
conductivity and the membrane permeability to M of a fully
porated region of the membrane.

� S2 and P2 are the membrane conductivity and the membrane
permeability to M of the altered lipid bilayer.

The total surface conductivity and permeability of the membrane
are then set as

Smðt; sÞ ¼ S0þSepðt; sÞ ¼ S0þX1ðt; sÞS1þX2ðt; sÞS2; 8 t40; sAΓ;

ð3Þ

Pmðt; sÞ ¼ P0þX1ðt; sÞP1þX2ðt; sÞP2; 8 t40; sAΓ: ð4Þ

Let us emphasize the main difference between the membrane
conductivity Sm, which is an intrinsic property of the membrane,
and Pm, which is the membrane permeability to a specific
molecule.

The order of magnitude of S1 is much larger than the resting
conductivity S0 as shown in experiments of Benz et al. (1979).
Since these observations highlight a remaining conductivity after
pulse delivery which is slightly above the resting conductivity, the
value S2 is set so as

S0oS25S1:

Permeabilization constants are taken in the same way:

P0oP25P1;

since it is theoretically much easier for a molecule to enter the
cytoplasm via a pore rather than through a permeable but non-
porated membrane.

Remark 3.1 (A membrane can be simultaneously permeable and not
conducting.). The relation between porosity and permeability has
been extensively studied for soils. We refer for instance to Chapuis
and Aubertin (2003). Note that for cell membranes, it is very
difficult to link porosity and permeability thanks to an algebraic
equation as in Chapuis and Aubertin (2003). Actually, since the
conducting state of the membrane lasts several microseconds
while the permeable state lasts several minutes, porosity and
permeability should be linked in a very complex way which is not
addressed in this paper. It is also worth noting that pore size of
DNA cannot last several minutes otherwise the cell integrity
should be altered, while few minutes after the electric shock,
DNA can be uptaken by the cells. This means that there is another
mechanism thanks to which large molecules cross the membrane.
Therefore, in the present paper we consider porated and perme-
able states separately. Here is the important feature of our
modeling: even without any pore, a membrane, which has been
fragilized or destructured by the electric pulse, has a non-zero
permeability, and thus may let molecules enter into the cytoplasm,
even though its conductivity is low.

Remark 3.2 (Membrane conductivity is intrinsic, not its permeabil-
ity). Note that if the conductivities (S0; S1; S2) are intrinsic to the
cell, the permeabilities (P0;P1;P2) depend on the molecules that
cross the membrane, in particular on their molecular weight,
spatial conformation and electric charge. For example, if a non-
permeant molecule such as bleomycin or DNA is considered, the
minimum value of permeability is set to P0 ¼ 0.

We will now focus on the description of the degree of poration
X1 in Section 3.1 and we then describe the degree of permeabiliza-
tion X2 in Section 3.2.

3.1. Pore creation and pore resealing

The function X1 describes the degree of porosity of the
membrane. It is related to the high conducting state of the
membrane as reported by the experiments of Benz et al. (1979).
It satisfies a differential equation similar to a sliding-door model of
electrophysiology. As pores are created only if a threshold voltage
is overcome, we set

∂tX1 ¼ F1ðX1; ½u�Þ; ð5Þ

with the initial condition

X1ðt ¼ 0; sÞ ¼ X0
1:

M. Leguèbe et al. / Journal of Theoretical Biology 360 (2014) 83–94 85



The function F1 is a function of the transmembrane potential
difference ½u� and of X1 itself given by

F1ðX1; ½u�Þ ¼
β1ð½u�Þ�X1

τ1
; ð6Þ

where τ1 is the characteristic time of the poration process and β1
is given by

β1ðλÞ≔
1þtanhðk1ðjλj�V thÞÞ

2
; ð7Þ

where k1 describes the slope of the sigmoidal function and V th

the threshold voltage above which electroporation occurs (see
Fig. 2).

3.2. Membrane permeabilization: a reaction–diffusion model for
lipid alteration

Consider now the degree of permeabilization X2. The model of
membrane permeabilization is based on the following assump-
tions, which come from experimental observations:

� We hypothesize that permeabilization results of a long-term
effect of defects in the membrane related to an alteration of
phospholipids due to the presence of water inside the mem-
brane. We thus use X1 as an initiating factor of permeabiliza-
tion. Actually it has been reported by Harakawa et al. (2005)
and Nikolova et al. (2012) that electric field changes the
phospholipid composition, by altering the lipid property.

� The dynamics of alteration and reconstruction of the mem-
brane are dramatically not the same as it has been observed by
the experiments (Rols et al., 1998; Teissié and Ramos, 1998).
The alteration of the lipids is a physical phenomenon, which
occurs as long as pores are present on the membrane and
whose characteristic time is in the order of the microsecond.
On the contrary, the membrane recovery is a biological phe-
nomenon, called exocytosis, which takes time: it happens
for minutes after the electric shock. Thus, we introduce two
different time constants: τ2;perm for the permeabilization and
τ2;res for the membrane recovery due to exocytosis, τ2;res being
in the order of one hour as reported by Glogauer et al. (1993).

� Lipids diffuse along the membrane at a speed dL around
1 μm2=s (Chen et al., 2006; Vaz et al., 1984; Tocanne et al.,
1994), which is non-negligible compared to the lapse of time
between two pulses (usually of the order of 1 s), and therefore
this surface diffusion has to be accounted for.

We thus use a reaction–diffusion equation to describe the degree
of lipid alteration X2:

∂tX2�dLΔΓX2 ¼ F2ðX1;X2Þ on Γ; ð8aÞ

with the initial condition

X2ðt ¼ 0; sÞ ¼ X0
2: ð8bÞ

We set

F2ðX1;X2Þ ¼

β2ðX1Þ�X2

τ2;perm
if β2ðX1Þ�X2Z0;

β2ðX1Þ�X2

τ2;res
if BTðX1Þ�X2r0;

8>>><
>>>:

ð9Þ

with

β2ðλÞ≔
1þtanhðk2ðjλj�X1;thÞÞ

2
; ð10Þ

where X1;th is a poration threshold. Since F2 is a Lipschitz function
with respect to its first variable, it is clear that existence and
uniqueness for X2 holds for any X1 smooth enough, and X2 is also
Lipschitz in X1. The mathematical analysis of the whole model is
not in the scope of this paper and we are confident that it can be
obtained thanks to quite standard analysis. However, from the
modeling point of view it is important to verify that X2 is actually a
degree of permeabilization, meaning that, similarly to X1, it takes
values in ½0;1�. The following proposition ensures this property.

Proposition 3.3 (Boundedness of X2). Let X2 be the solution to (8).
Then for almost any ðt; sÞAð0; TÞ � Γ

0rX2ðt; sÞr1:

Proof. Let us define X�
2 ≔maxð0; �X2Þ. Multiplying (12k) by X�

2
and integrating by part lead to

1
2
d
dt
‖X�

2 ‖2
L2ðΓÞ þdL‖∇X�

2 ‖2
L2ðΓÞ ¼ �

Z
Γ
FðX2;X1ÞX�

2 ds;

but since

FðX2;X1ÞX�
2 ¼ β2ðX1Þ�X2

τ2;perm
X�
2 Z0;

and since ‖X�
2 ‖2jt ¼ 0 ¼ 0 we infer that X2 is positive. Defining

Y2 ¼ X2�1, introducing similarly Y þ
2 ≔maxð0;X2�1Þ, and using

the fact that

F2ðY2þ1;X1Þ ¼

β2ðX1Þ�1�Y2

τ2;perm
if β2ðX1Þ�1�Y2Z0;

β2ðX1Þ�1�Y2

τ2;res
ifβ2ðX1Þ�1�Y2r0;

8>>><
>>>:

ð11Þ

and thus

FðY2þ1;X1ÞY þ
2 ¼ β2ðX1Þ�1�X2

τ2;res
Y þ
2 r0;

show that Y þ
2 equals zero and thus X2r1. □

Remark 3.4 (The choice of the sigmoidal function). For both pora-
tion and permeabilization degrees, we used hyperbolic tangents
to describe the change in the membrane properties (7)–(10):
the functions β1 and β2 are defined thanks to two parameters
describing a threshold and a speed of the switch between these
states. Note that any (smooth enough) sigmoidal function invol-
ving similar parameters can be used in the model. In particular, if
one wants to relate the degree of poration to the local electrostatic
energy, one can use for example:

β1ðλÞ ¼ e�kðV=λÞ2 ;

with V and k being the new threshold and switch speed para-
meters respectively. However, the hyperbolic tangent has the
advantage to identify easily the threshold value and the speed of
switch between the non-porated (resp. the non-permeabilized
state) state and the porated state (resp. the permeabilized state).

Fig. 2. The function β1 for different slope values k1.
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4. Numerical methods

Before presenting the numerical methods, let us summarize the
complete model of conducting and permeable states of mem-
brane:

Δu¼ 0 in Oc [ Oe; ð12aÞ

∂tM�deΔM ¼ μe∇ � ðM∇uÞ in Oe; ð12bÞ

∂tM�dcΔM ¼ 0 in Oc; ð12cÞ
with the transmission conditions

σe∂νujΓ þ ¼ σc∂νujΓ � ; ð12dÞ

Cm∂t ½u�ΓþS0ð½u�Γ�u0ÞþSepðt; ½u�ΓÞ½u�Γ ¼ σc∂νujΓ � ; ð12eÞ

de∂νMjΓ þ þμeMjΓ þ ∂νujΓ þ ¼ dc∂νMjΓ þ ; ð12f Þ

Pmðt; ½u�ΓÞ½M�Γ ¼ dc∂νMjΓ � ; ð12gÞ
where

Sepðt; ½u�ΓÞ ¼ X1ðt; ½u�ΓÞS1þX2ðt; ½u�ΓÞS2; ð12hÞ

Pmðt; ½u�ΓÞ ¼ X1ðt; ½u�ΓÞP1þX2ðt; ½u�ΓÞP2; ð12iÞ
with

∂tX1 ¼ F1ðX1; ½u�Þ; ð12jÞ

∂tX2�dLΔΓX2 ¼ F2ðX1;X2Þ; ð12kÞ
with the boundary conditions

uj∂Ω ¼ uimpðtÞ; Mj∂Ω ¼M0; ð12lÞ
and with the initial conditions

uð0; �Þ ¼ u0; Mð0; �Þ ¼M01Oe ; X1ð0; �Þ ¼ 0; X2ð0; �Þ ¼ 0: ð12mÞ

4.1. Discretization of equations in extra- and intracellular domains

In order to solve numerically the complete model (12), several
discretization methods are needed. The equations on the electric
potential u (12a), (12d) and (12e) are solved using the same
numerical scheme as already used in the previous paper dedicated
to the electric part of the model (Kavian et al., 2014). We also
described precisely the method in Leguèbe et al. (2013). The
scheme is based on finite differences on a cartesian grid, with a
special treatment of discontinuities at an interface. Its main
feature is to insert two additional unknowns per intersection
between the interface and the cartesian grid. These unknowns
make it possible to compute quantities that are defined on the
membrane only, such as ½u�, Sep and Pm. This method is of order
2 in space and order 1 in time. It has been adapted to the
3-dimensional case for the simulations that will be presented in
Section 5.

In order to avoid confusion between the indexation systems
that will be described, we will index cartesian grid points by i,
which is a 3-uple: iAN3, while the intersection points between
the grid and the interface are denoted by jAN. Let ~Γ denote the
set of these intersection points.

When necessary, we make the distinction between values
inside and outside the cell using the superscripts c and e: uc and
ue denote the potential respectively inside and outside the cell.
ðΔuÞni and ð∂νucÞnj , ð∂νueÞnj designate respectively the discretizations
of the Laplacian of u at the grid point Pi and the normal derivative
of uc, ue at the point Pj of the interface at the time iteration tn ¼ nδt
(δt being the time pace). The numerical scheme for the potential

equations is the following:

8 iA ½0;N�3; ðΔuÞnþ1
i ¼ 0; ð13aÞ

8PjA ~Γ ; σcð∂νucÞnþ1
j �σeð∂νueÞnþ1

j ¼ 0; ð13bÞ

8PjA ~Γ ;
Cm

δt
ðue;nþ1

j �uc;nþ1
j Þ�σeð∂νueÞnþ1

j

¼ Cm

δt
þSnm

� �
ðue;n

j �uc;n
j Þ; ð13cÞ

where N is the number of grid discretization points. A Dirichlet
boundary condition in a given direction, coupled with an isolating
Neumann condition in the other directions, simulates an external
uniform electric field around the cell.

Since it is based on the same geometry as the potential, the
model of transport and diffusion of molecules is solved with the
same discretization method for the Laplacian on Oe and Oc, and
for the normal derivatives on Γ. However, since the position of the
interface (typically a sphere) in a cartesian grid leads to large
irregularities, the method is too restrictive on the time pace to
solve Eqs. (12b), (12c), (12f) and (12g) in a single iteration.

We decided to split the transport and diffusion steps as follows:
let En be the electric field computed from un:

8 iA ½0;N�3; 1
δt

Mn

i ¼
1
δt

Mn
i þð∇ � ðμMEnÞÞni ; ð14aÞ

8PjA ~Γ ;
∂νMn

j ¼ 0 if En � ν40;

Mc;n
j ¼Me;n

j if En � νo0;

8<
: ð14bÞ

where ð∇ � ðμMEnÞÞni is the discretization of ∇ � ðμMEÞ at Pi at the
time tn using an order 1 upwind scheme, and ν is the outward unit
normal vector to the interface. Note that the motility μ vanishes if
the point Pi is inside the cell. The Dirichlet boundary condition
equal to M0 is used if the electric field is entering the simulation
box, that is, when ∇u � νZ0 on ∂Ω.

The diffusion step is discretized as follows:

8 iA ½0;N�3; 1
δt

Mnþ1
i �dðΔMÞnþ1

i ¼ 1
δt

Mn
i ; ð15aÞ

8PjA ~Γ ; deð∂νMeÞnþ1
j �dcð∂νMcÞnþ1

j ¼ μeM
e;n
j ð∂νueÞnj ; ð15bÞ

8PjA ~Γ ; PmðMe;nþ1
j �Mc;nþ1

j Þ ¼ deð∂νMeÞnþ1
j ; ð15cÞ

with a homogeneous Neumann condition on the boundary of the
simulation box. This numerical scheme is similar to the scheme
used in Kavian et al. (2014) for a static model of electric potential
since there is no time derivative in the transmission condition of
the discontinuity of M. Thus, we use the same fixed point method
as in Kavian et al. (2014): starting from Mk ¼Mn, we solve

8 iA ½0;N�3; 1
δt

Mkþ1
i �dðΔMÞkþ1

i ¼ 1
δt

Mk
i ; ð16aÞ

8PjA ~Γ ; deð∂νMeÞkþ1
j �dcð∂νMcÞkþ1

j ¼ μeM
e;n
j ð∂νueÞnj ; ð16bÞ

8PjA ~Γ ; PmðMe;kþ1
j �Mc;k

j Þ ¼ deð∂νMeÞkþ1
j ; ð16cÞ

until the residual ‖Mkþ1�Mk‖L2ðΓÞ=‖M
k‖L2ðΓÞ is inferior to 10�8.

Then we use Mkþ1 as the solution at the time tnþ1.

Remark 4.1. Between two pulse deliveries, it is not necessary to
solve the equations on the potential, as well as the electrophoretic
transport of M. It is then possible to use a much larger time step
than the step used during the pulses.
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4.2. Discretization of the reaction–diffusion model on the interface

In order to discretize Eq. (12k) on X2, we will use the following
numerical scheme:

1
δt

Xnþ1
2 �dLðΔΓÞXnþ1

2 ¼ 1
δt

Xn
2þF2ðXn

2; SepÞ: ð17Þ

where ðΔΓ ÞXnþ1
2 is the approximation Laplace–Beltrami operator

(LBO) ΔΓ on the interface at time tnþ1.

4.2.1. Existing LBO discretizations
In Xu (2004), Xu reviewed several finite volumes methods to

discretize the Laplace–Betrami operator. Most of them do not
converge, but the author proposed two ways to compute the LBO
on a smooth surface that converge under certain circumstances.
We first applied the indirect discretization using an interpolation
of the gradients (see Sections 3.1 and 4.1 of Xu, 2004), on a mesh
generated with the intersection points that were defined in the
previous section. Fig. 3 shows that no convergence is achieved,
mainly due to the irregularities of the mesh. Indeed, whatever the
pace of the cartesian grid, the intersection with a sphere always
produces triangles with very heterogeneous dimensions.

Denoting byΨðθ;φÞ the parametrization of the sphere of radius
R centered at the origin,

Ψðθ;φÞ ¼
R sin φ sin θ
R cos φ sin θ

R cos θ

0
B@

1
CA; 8ðθ;φÞA ½0;π� � ½0;2π�;

the curvature H is given by

H ¼ΔΓΨ¼ �2
R
ν;

and thus we compute an estimation of the coordinates, noted
as ψ , from the given curvature. Remark that the solution Ψ is
defined up to a constant, which is fixed by adding the relation
ψðθ;φÞ=ϵ¼Ψðθ;φÞ=ϵ on an arbitrary line of the discretization
matrix, with ϵ being a small penalization parameter. We measure
the convergence by computing

E2≔
jψ�Ψj2
jΨj2

����
����
L2ðΓÞ

and E1≔
jψ�Ψj2
jΨj2

����
����
L1ðΓÞ

: ð18Þ

In a second time, we use a more regular mesh, generated by
subdividing the faces of an icosaedron, so that all mesh triangles
have similar dimensions and are nearly equilateral. The method
then achieves a convergence of order almost 2, as shown in Fig. 4,
but the spatial repartition of the error presents some oscillations
that can degrade the solution of our diffusion problem.

4.2.2. LBO discretization for parametrized surfaces
Since a regular mesh is needed to improve convergence, and

cells for in vitro experiments usually have a simple shape, we
decided to directly express the LBO from a parametrization of the
surface Γ.

Let θA �0;π½ and φA �0;2π½ andΨðθ;φÞ be this parametrization.
The Riemanian metric at a point ðθ;φÞ is given by

gθθ≔j∂θΨðθ;φÞj22; gφφ≔j∂φΨðθ;φÞj22; gθφ≔〈∂θΨðθ;φÞ; ∂φΨðθ;φÞ〉:

Let

G≔
gθθ gθφ
gθφ gφφ

 !
; g≔detðGÞ and G�1≔

gθθ gθφ

gθφ gφφ

 !
:

The LBO is then given by

ΔΓ f ðθ;φÞ ¼
1ffiffiffiffiffiffijgjp ½∂θð

ffiffiffiffiffiffi
jgj

p
ðgθθ∂θf þgθφ∂φf ÞÞ

þ∂φð
ffiffiffiffiffiffi
jgj

p
ðgθφ∂θf þgφφ∂φf ÞÞ�: ð19Þ

The interface is discretized by a cartesian grid in ðθ;φÞ, with Nθ
points in the θ-direction and 2Nθ points in the φ-direction, so
as the pace δθ is the same in both directions. For the sake of
readability, we use the following notations:

80rkrNθ ; θk≔ kþ1
2

� �
δθ;

80r lr2Nθ ; φl≔ lþ1
2

� �
δθ;

~gkl≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðθk;φlÞj

q
; gαβkl ¼ gαβðθk;φlÞ; 8ðα;βÞAfθ;φg:

The LBO is discretized using a centered second-order finite difference
formula:

ðΔΓ f Þkl ¼
1
~gkl

~gkþð1=2Þlg
θθ
kþð1=2Þlðf kþ1l� f klÞ� ~gk�ð1=2Þlg

θθ
k�ð1=2Þlðf kl� f k�1lÞ

δθ2

"

þ
~gklþð1=2Þg

φφ
klþð1=2Þðf klþ1� f klÞ� ~gkl�ð1=2Þg

φφ
kl�ð1=2Þðf kl� f kl�1Þ

δθ2

þ
~gkþ1lg

θφ
kþ1lðf kþ1lþ1� f kþ1l�1Þ� ~gk�1lg

θφ
k�1lðf k�1lþ1� f k�1l�1Þ

4δθ2

þ
~gklþ1g

θφ
klþ1ðf kþ1lþ1� f k�1lþ1Þ� ~gkl�1g

θφ
kl�1ðf kþ1l�1� f k�1l�1Þ

4δθ2

#
:

ð20Þ
The following periodicity conditions are used:

f k;2Nθ þ1 ¼ f k;0; f k;�1 ¼ f k;2Nθ
;

f �1;l ¼ f 0;ðlþNθ Þ½Nθ �; f Nθ þ1;l ¼ f Nθ ;ðlþNθ Þ½Nθ �:

Fig. 3. (a) Non-convergence of the LBO discretization given by Xu (2004) on a sphere, using the intersection points between the cartesian grid and the level-set function. The
error is defined in Eq. (18). (b) Spatial repartition of the error on the sphere with a 503 points wide cartesian grid.
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Note that the metric has to be computed halfway between grid points,
in particular at the poles θ¼ 0 and θ¼ π. Usually, G is not invertible at
these points, and the LBO cannot be defined using the parametriza-
tion. In that case, we compute the metric with θ¼ ϵ or θ¼ π�ϵ, with
ϵ being � 10�40.

In order to validate our spatial discretization of the LBO,
here again we compute the curvature of a sphere. Moreover, we
test our discretization on an ellipsoid, whose parametrization is
given by

Ψðθ;φÞ ¼
r sin θ cos φ
r sin θ sinφ
αr cos θ

0
B@

1
CA; αa0;

and the curvature by

H ¼ΔΓΨðθ;φÞ ¼ �α
r
1þ cos 2 θþα2 sin 2 θ
ð cos 2 θþα2 sin 2 θÞ2

α sin θ cos φ
α sin θ sinφ

cos θ

0
B@

1
CA:

Convergence results for the finite difference method are pre-
sented in Figs. 5 and 6: as expected, the order 2 of convergence
is achieved. Compared to the finite volume methods presented
by Xu, we obtain a better convergence, as well as a significant

improvement in computation time, the drawback being that we
need an analytical expression of the surface.

4.3. Coupling the discretizations

In the previous paragraphs, we presented two different ways
to describe the interface. Since these two sets of points do not
coincide (see Fig. 7), we need to perform interpolations between
them: once step (13) has been performed, X2 must be computed
on the ðθ;φÞ-grid to continue on step (17), and the reverse
operation has to be done after this diffusion step. In this para-
graph, we will designate by intersection points the locations of
the intersections between the 3D cartesian grid (representing
Oc [ Oe) and Γ. The points defined by the ðθ;φÞ-grid involved in
the LBO discretization will be called mesh points.

4.3.1. From the mesh points to the intersection points
To obtain the values on the intersection points knowing the

function on the mesh points, the coordinates of the intersection
points are directly projected on the ðθ;φÞ-grid. This can be done
straightforwardly if the expression of the reciprocal parametriza-
tion is known. A regular bilinear interpolation is then possible on

Fig. 4. Convergence (a) and spatial repartition of the error (b) using a regular mesh of a sphere. This mesh is generated by subdividing the faces of an icosahedron and
projecting the vertices on the sphere.

Fig. 5. (a) Convergence of ðθ;φÞ-LBO-discretization on a sphere. The error is computed by Eq. (18). (b) Spatial repartition of the error.
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this grid: if ðθj;φjÞ are the coordinates of the point PjA ~Γ in
½θk;θkþ1� � ½φl;φlþ1�:

f ðθj;φjÞ � ðf kl� f kþ1l� f klþ1þ f kþ1lþ1Þ
ðθj�θkÞðφj�φlÞ

dθ2

þðf kþ1l� f klÞ
θj�θk

dθ
þðf klþ1� f klÞ

φj�φl

dθ
þ f kl:

4.3.2. From the intersection points to the mesh points
For the reverse interpolation, we consider the 3D-cartesian cell

in which is located a mesh point. In this cell, the interface is
described by a convex polygon whose vertices are intersection
points where values are known (see Fig. 8). We use barycentric
coordinates to perform the interpolation on the mesh point, as
given by Meyer et al. (2002). Let Pj, j¼ 1;…; jmax be the list of these
vertices, ordered along j around the mesh point Pkl. We define the
weights

αj ¼
cotanðPjPkl

-

;PjPj�1

-

ÞþcotanðPjPkl
-

;PjPjþ1

-

Þ
jPklPj

-

j22
:

The value of a function f at Pkl is then given by ∑jmax
i ¼ 1αjf j.

Fig. 9 shows that the two interpolation methods are of order 2.

5. Results

In order to run the simulations, we need to adjust the para-
meters of the equations. Parameters for the electric potential can
be fixed in accordance with the papers of Neu et al. Moreover, the
diffusion of lipids along the membrane is quite well-known, and
of order 1 μm2=s and the time constants τ2;perm and τ2;res can
be obtained by the experiments. It thus remains to choose the

Fig. 6. (a) Convergence of the ðθ;φÞ-LBO-discretization on an ellipsoid (α¼ 0:5). The error is computed by Eq. (18). (b) Spatial repartition of the error.

Fig. 7. (a) Mesh generated from the intersection points with the cartesian grid, used for the resolution of the potential and transport equations. (b) ðθ;φÞ-mesh on which the
LBO is discretized.

Fig. 8. Interpolating values known on the intersection points Pj; j¼ 1 : 6 to
evaluate a function at the mesh point Pkl.
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4 parameters of the sigmoidal functions β1 and β2 as well as the
values of the permeabilities P1 and P2. Since it is not the scope of
the present paper to calibrate precisely the model with some
specific experiments, we choose parameters that provide results
that are qualitatively in accordance with the experiments. All the
parameters are given in Table 1. We emphasize that a precise
calibration of the model would be necessary to obtain quantitative
results, however this represents a huge amount of work: it needs
the development of specific numerical tools and appropriate
experimental data to fit with and it is far beyond the scope of
the present paper.

5.1. Diffusion and transport of molecules in a 2D cell,
without lipid diffusion

In order to validate our model, we first confront both the
numerical transport and the diffusion of the molecule to the
experimental results of PI uptake for various pulses. Based on
the articles of Escoffre et al. (2011) and DeBruin and Krassowska
(1999), we choose the parameters for the simulations given by
Table 1.2 We compare the results of the simulation with the
experimental data of Escoffre et al. (2011) involving millipulses.
Comparison is also led with the observations of Vernier et al.
(2003), using micro- and nanopulses. In these 2D simulations, we
omit the surface diffusion of lipids on the cell membrane.

For long duration pulses, the electrophoretic effect brings more
PI on the part of the cell which faces the anode. This accumulation
leads to an asymmetry in the PI repartition inside the cytosol.
Figs. 10 and 11 show that the modeling is in good agreement with
the experiments, at least qualitatively.

5.2. Simulating the whole model in a 3D cell

It has been very recently reported in Silve et al. (2014) that,
strikingly, for the same number of pulses, a high frequency rate of
repetition is less efficient than pulses repeated at low frequency.
From the modeling point of view, this question of such “desensi-
tization” has never been addressed and we show in this section
that our model can provide an explanation to these observations.

We performed 3D-simulations of a spherical cell submitted
to 10 permeabilizing micropulses (10 μs, 40 kV/m), with various
repetition rates from 1 to 1000 Hz. In these simulations, we set the

diffusion of the lipids on the membrane to

dL ¼ 10�12 m2 s�1:

The average permeabilization Pm of the membrane, as well as the
concentration of molecules that entered the cell, are measured
along time.

Fig. 12 shows the distribution of Pm on the surface of the cell at
different instants of the 1 Hz and 1000 Hz simulations. A comparative
animation of these two simulations is also available as Supplementary
Material. We see that in the case of a fast repetition rate, the altered
lipids do not have time to be evenly spread on the membrane. Since
the next pulse will alter the same region as the first, the total quantity
of altered lipids will be lower than the 1 Hz case.

Fig. 13 presents the average of Pm after each pulse. As expected,
the permeabilization is more efficient if enough time is left
between pulses to let the lipids diffuse.

In Fig. 14, we plot the average concentration of molecules in the
cytoplasm along time, growing as long as the value Pm is non-zero.
We can see that the 1000 Hz case leads to a lower efficiency
of the permeabilization leading to a lower amount of internalized
molecules. We emphasize on the fact that the final quantity of
molecules is highly dependent on the constants τ2;res and P2. If P2

Fig. 9. Convergence of interpolation methods for the mapping ðx; y; zÞ↦x2þ1. The computed error is the L2ðΓÞ norm of the relative difference between the interpolation and
the solution: (a) from the mesh points to the intersection points. (b) From the intersection points to the mesh points.

Table 1
Simulation parameters. Biological parameters are taken from DeBruin and Krassowska
(1999) and Escoffre et al. (2011).

Variable Symbol Value Unit (SI)

Biological parameters
Spherical cell radius r 8�10�6 m
Extracellular conductivity σe 5 S m�1

Intracellular conductivity σc 0.455 S m�1

Capacitance Cm 9.5�10�3 F m�2

Membrane surface conductivity S0 1.9 S m�2

Resting potential u0 �40�10�3 V
Molecule diffusion in cytosol dc 10�9 m2 s�1

Molecule diffusion in outer medium de 10�8 m2 s�1

Molecule motility in outer medium μe 10�6 m2 V�1 s�1

Model parameters for X1

Pore conductivity S1 1.1�106 S m�2

Pore permeability P1 10�6 m s�1

Poration threshold V th 0.2 V
Poration switch speed k1 40 V�1

Poration characteristic time τ1 2�10�5 s

Model parameters for X2

Altered membrane conductivity S2 103 S m�2

Altered membrane permeability P2 10�7 m s�1

Conductivity threshold X1;th 8�104 S m�2

Permeabilization switch speed k2 10 S�1 m2

Permeabilization dynamic τ2;perm 10�6 s
Membrane recovery time τ2;res 60 s

2 Since the time scales are from a few microseconds for the poration to a few
hour for the total recovery of the membrane, the computation times are very huge.
Since our goal is to provide qualitative behaviours of the model, and not
quantitative results, for the sake of simplicity we decrease to 60 s the time recovery
of the membrane by exocytosis. Forthcoming works of parallel computing will be
addressed to fit quantitatively the model with the biological data.
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is large enough (for example for very small molecules), the
concentration can reach its maximum value in a very short time
whatever the pulse frequency. On the contrary, small values of Pm

increase the difference between the final internalized quantity of
molecules. In particular, these simulations corroborate results
of High Voltage/Low Voltage experiments (Šatkauskas et al.,
2005) that, within the first seconds after the pulses, show a better
permeabilization to DNA when the lapse of time between pulses is
longer.

6. Conclusion

We have presented a model, which describes simultaneously
the conducting and the permeable states of the membrane, with-
out identifying these states. This is an important novelty in
the modeling of cell electropermeabilization, which only dealt
with the electrical behaviour of the membrane before. Our model
makes it possible to compare straightforwardly the majority of
the available experimental data, which essentially deal with the

Fig. 10. PI uptake during 10 millipulses of 20 ms, 50 kV/m, 1 Hz. Comparison between the experiments (a), as given by Escoffre et al. (2011) and the simulation (b). PI
concentrations are given relative to the external initial concentration. Two different color scales are used to represent PI concentration, since the proportion of PI inside the
cell is much lower than outside. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 11. Comparison between simulations and experiences from Vernier et al. (2003). The time indications are taken after all pulses are applied. (a) 5 micropulses of 100 μs,
500 kV/m, 4 Hz. (b) 10 nanopulses of 30 ns, 2.5 MV/m, 4 Hz. The color scale is the same as in Fig. 10. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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diffusion of non-permeant molecules across the membrane, taking
into account the fast time to recover a low conductivity and
the long-time permeabilized state. Another important feature of
our model is that the diffusion of the lipids along the membrane
makes it possible to explain the striking experimental observa-
tions: the more you wait between the pulse, the more efficient is
the permeabilization, which cannot be accounted for by consider-
ing the membrane conductivity only.

Therefore our numerical results show that the model behaves
qualitatively in accordance with the experiments. In order to
provide quantitative results, forthcoming work will be to calibrate
the parameters. We emphasize that our model was built with the
least parameters as possible in order to solve the inverse problem
of the fitting.
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