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Abstract

This work deals with impermeable and permeable interfaces and the design of numerical strategies allowing
multi-dimensional propagation of these interfaces on general unstructured grids. The numerical context
is the (Reactive) Discrete Equations Method (DEM/RDEM) for the Baer-Nunziato type non-equilibrium
multiphase model allowing a diffused interface, and meanwhile preserving the global conservation, which
is of fundamental importance for studying long term combustion phenomena in large-scale geometries.
Another advantage of RDEM for combustion lies in its ability to compute both deflagration and detonation,
provided an appropriate reactive Riemann solver is inserted within the method. The present paper is a
sequel to the recent publication (Tang et al., 2014) where an anti-diffusive approach and an original Upwind
Downwind-Controlled Splitting method (UDCS) were combined with the 1D formulation of the DEM and
RDEM. The method successfully developed in 1D for computing inert interfaces (e.g. impermeable water
gas shock tube problem) and flame interfaces (e.g. Chapman-Jouguet deflagration and strong detonation
wave) with excellent robustness and accuracy properties is extended here to two dimensional problems. The
proposed low- and anti-diffusive versions of the multi-D UDCS strategy form an original contribution to the
modeling of multifluid flows on unstructured grids. This multi-D extension relies on a general derivation
of the Downwind Factors involved in the formulation of UDCS. In particular, the proposed UDCS anti-
diffusive algorithm represents a new alternative to the “Extended–Vofire” solver (Faucher and Kokh, 2013)
for unstructured meshes. Numerical experiments performed for non-reacting gas-gas and liquid-gas shock
bubble interactions as well as for a model combustion problem demonstrate the combination of DEM/RDEM
with UDCS yields excellent robustness/accuracy properties. Some remaining issues linked to the modeling
of flame propagation in multi-dimensional cases are eventually discussed.
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1. Introduction

The Discrete Equations Method (DEM) was pro-
posed by Abgrall and Saurel, 2003 [1] with the aim
of computing compressible multiphase flows. When
interface problems are involved, DEM belongs to
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the family of Diffuse Interface approaches. Chin-
nayya et al., 2004 [7] first extended the original
DEM to the reactive case of detonation waves us-
ing operator splitting for reaction source terms on
2D structured meshes. Le Métayer et al., 2005 [25]
then extended DEM to RDEM for the modeling of
evaporation and detonation fronts using a reactive
Riemann solver, where the Chapman-Jouguet (CJ)
deflagration and CJ detonation points are respec-
tively imposed. Next, Beccantini and Studer, 2010
[4] proposed a reactive Riemann solver in which the
transition from deflagration to detonation is contin-
uous with respect to the fundamental flame speed,
and they first succeeded to compute both defla-
gration and detonation flows using the RDEM ap-
proach on unstructured meshes. Two major numer-
ical difficulties were however identified:

a) The first-order RDEM method is robust, but
yields a very diffusive flame profile for fast defla-
gration and detonation waves, which spoils the
global accuracy of flow quantities in the flame
region;

b) The quasi second-order RDEM method with a
limiting approach and Predictor-Corrector time
stepping improves the accuracy, especially for
the flame front. However, robustness limita-
tions appear in the multi-dimensional case so
that very small Courant numbers are sometimes
required.

With the objective to solve the aforementioned
issues, the present 2D paper together with our
previous 1D work [35] addresses high order
DEM/RDEM approach and proposes an original
numerical algorithm for both inert and reactive
(deflagration and detonation) interface problems.
Note the problem of properly extending the
DEM/RDEM approach to the multi-dimensional
case has also been recently addressed by Franquet
and Perrier in the framework of the Discon-
tinuous Galerkin approach [17, 16, 18]. The
key ingredient of the novel numerical strategy
proposed in the present contribution consists
in combining DEM/RDEM with an Upwind
Downwind-Controlled Splitting (UDCS) strategy.
The proposed second-order low-diffusive and anti-
diffusive versions of this multi-D UDCS approach
represent an original contribution to the modeling
of multifluid flows on unstructured meshes.

As previously mentioned in [34, 35], the basic idea
behind the coupling between DEM/RDEM and

UDCS is to improve to second-order the accuracy
of the first-order version of DEM/RDEM while
preserving a robustness level similar to the one
offered by the first-order method. This scheme re-
lies indeed upon the idea of redistributing volume,
mass, momentum and energy at the numerically
diffused interface region, while satisfying global
conservation conditions (mass, momentum, and
energy leaving one phase enter into the other
phase). The essential strategy of the proposed
approach involves two steps: an “upwind step”
where the first-order upwind method is employed
in the DEM/RDEM approach, and a “downwind-
controlled step” where part of the numerically
diffused volume is moved back to its upwind
cell element while fulfilling the Local Extremum
Diminishing (LED) property (see [21] for details
on LED). This second step can be expressed using
classical second-order limiters available in the lit-
erature or an anti-diffusive approach (see [35]). As
will be demonstrated in the present contribution,
the extension of the approach to multi-dimensional
unstructured meshes is straightforward when a
second-order limiting strategy is retained. The
anti-diffusive UDCS approach can also be readily
extended to multi-dimensional problem in each grid
element, provided the quantity to be distributed for
“downwinding” on outlet intercell boundaries, in
the second step of UDCS, is assumed proportional
to the quantity previously “upwinded” in the first
step.

The proposed multi-dimensional UDCS anti-
diffusive approach represents an alternative to
the “Vofire” method [10, 15]. Indeed, in “Vofire”,
anti-diffusion is obtained by decomposing intercell
boundaries in order to yield, in each element,
several pseudo-1D problems involving only one
inlet and one outlet intercell boundary. In the
presently proposed approach, all the inlet intercell
boundaries are merged together on one hand as
well as the outlet boundaries on the other hand, in
order to yield a single pseudo 1D problem to deal
with.

As will be demonstrated, the resulting multi-D
UDCS scheme yields the following two main ad-
vantages:

a) Both the second-order and the anti-diffusive
UDCS schemes combined with DEM/RDEM are
as robust as a first-order scheme.
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b) The developed second-order or anti-diffusive
UDCS method considerably improves the accu-
racy of the first-order DEM/RDEM method for
both impermeable and permeable interfaces on
unstructured meshes.

Note that the reactive Riemann solver [4] inserted
into RDEM in this work has the capability of
computing a wide range of combustion regimes
without resorting to operator splitting: weak
deflagration, Chapman-Jouguet deflagration,
Chapman-Jouguet detonation, strong detonation
and deflagration to detonation transition can all be
addressed. The ability of the UDCS anti-diffusive
method coupled with RDEM to compute a quasi
exact 1D reactive shock has been established in
[35]. The present work demonstrates it can also
sharply resolve a 2D reactive shock. The present
paper is focused on the numerical solution of the
two-phase flow model so that the reader is referred
to [4] for more details on the reactive Riemann
solver used in this work for dealing with the reac-
tion mass transfer terms appearing at the interface.

The article is organized as follows: Section 2 is de-
voted to two dimensional DEM/RDEM, and mainly
to the derivation of the 2D UDCS scheme for
the scalar topological (transport) equation appear-
ing in DEM/RDEM for the Baer-Nunziato type
two-phase flow model [11, 33, 35]. In particular,
downwind factors for both second-order and anti-
diffusive versions of UDCS are presented. For the
sake of conciseness, the present paper is supposed
to be read as a follow-up of [35] where a detailed
description of the physical model, the equations of
state (EOS) and the (Reactive) Discrete Equations
Method is available and thus not reproduced here.
The proposed method is next assessed in Section
3 on three carefully selected test problems. Con-
clusions follow, which summarize the main ben-
efits obtained from using the multi-dimensional
UDCS approach within the DEM/RDEM frame-
work and provide a few references to recent pub-
lications making use of the developed second-order
RDEM approach for performing combustion simu-
lations in large-scale geometries. Details on the nu-
merical discretization of the non-conservative flux
term and the numerical fluxes involved in the multi-
dimensional DEM/RDEM approach are reported in
Appendix A while the multi-dimensional limiter
used for the quasi second-order variable reconstruc-
tion is thoroughly described in Appendix B.

2. Multi-D Discrete Equations Method and
Upwind Downwind-Controlled Splitting:
an original algorithm of low- and anti-
diffusive scheme on unstructured grids

Building upon the previous 1D contribution [35],
the objective of the present work is to solve the fol-
lowing two-fluid system (the phase index k ∈ {1, 2})
for interfaces that might involve chemical reactions:

∂ (αkUk)

∂t
+∇·(αkFk) = (Fk,I −Uk,IDI)·∇αk, (1)

with

U =









1
ρ

ρv
ρẽt









, F =









0
ρv

ρvv + pI
ρẽtv + pv









.

The variable α is the volume fraction (i.e. the re-
action progress variable [4] in a combustion case),
ρ the density, v the flow velocity vector, p the pres-
sure, ẽt the total energy. As explained in [4, 35],
the thermal diffusivity and the species diffusion for
combustion simulation are not taken into account;
chemical reaction can only occur at the interface.
The first equation in (1) corresponds to the topo-
logical (transport) equation

∂αk

∂t
+ DI · ∇αk = 0. (2)

where DI denotes the physical interface velocity
(i.e. total flame velocity in case of combustion).
Note that only the component

DI · nk (3)

needs to be defined, which corresponds to the
velocity component perpendicular to the physical
interface. Here nk is the normal unit vector
pointing toward the outside of phase Σk.

The two-phase model (1) can be reformulated as
follows:

∂ (αkUk)

∂t
+∇·(αkFk) = Mk,I ·∇αk +Gk,I ·∇αk,

(4)
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with

M = U(v − D) =









(v − D)
ρ(v − D)

ρv(v − D)
ρẽt(v − D)









,

G = F − Uv =









−v
0
pI
pv









.

Here Mk,I represents the mass transfer at the
interface. For non-reacting problems (for instance
the shock bubble interaction test-cases computed
in this work) Mk,I vanishes. Note the two-fluid
system (1) or (4) is often referred to as a Baer-
Nunziato type model [2] in the literature (see for
instance [36, 39]).

One of the key objectives of the present work is
to obtain a numerical model capable of simulating
high speed (both subsonic and supersonic) com-
bustion waves, in which case the mass transfer rate
across the flame interface is significant, and the
chemical evolution is assumed to be governed by
one irreversible, infinitely fast chemical reaction.
For this reason, no assumption of mechanical or
chemical equilibrium [39] in the two-phase model
(1) or (4) is made in this work. Note indeed that
the assumption of mechanical equilibrium is valid
if the mass transfer rate is zero or negligible (see
[20, pp. 38–43]), for instance when chemical equi-
librium is reached, or when very slow deflagrations
take place. When dealing with the non-reacting
interface problems considered in this paper, where
no mass transfer occurs, the addition of relaxation
terms [29, 39] to the model (1) or (4) aiming to
reach mechanical equilibrium does not have any
visible impact on the computed numerical solutions
[35], since, for interface problems separating pure
fluids, no physical mixture is present. Thus, the
non-equilibrium model (1) is used in this work for
both non-reacting and reacting interfaces.

As a first support for discussing the numerical as-
pects involved in the solution of the above two-fluid
system, a typical element Ci of a two-dimensional
unstructured grid is displayed in Fig. 1. Its bound-
aries {∂Ci,j} can be divided into two categories: in-
let (denoted as {∂Ci,in,j}) and outlet (denoted as
{∂Ci,out,j}) ones. An inlet boundary ∂Ci,in,j for

phase Σk is characterized by

Dn
i,in,j · ni,in,j < 0, (5)

with ni,in,j the normal unit vector pointing toward
the outside of Ci. That is, the numerical interface
enters inside Ci, which generates a (positive or neg-
ative) volume of Σk. Here Dn

i,in,j has been assumed
to be the inlet numerical interface velocity. On the
other hand, an outlet boundary ∂Ci,out,j is such that

Dn
i,out,j · ni,out,j > 0, (6)

with ni,out,j pointing also toward the outside.
Dn

i,out,j is the outlet numerical interface velocity.

When solving system (1) using (Reactive) Discrete
Equations Method (DEM/RDEM) [1, 25], as
explained in our previous work [35, Section 3],
an important procedure consists in the intercell
surface partition. In the 2D case, considering for
instance an intercell boundary ∂Ci,in,j in Fig. 1, the
solutions of two or three local Riemann problems
for (reactive) Euler equations are required among
four possibilities (see the right part of Fig. 1, where
~z is perpendicular to the 2D domain). Indeed, at
least both of the two single-phase Riemann prob-
lems (for Euler equations) should always be solved.
Furthermore, if αn

i,in,j − αn
i , 0, one additional

two-phase (inert or reactive) Riemann problem (for
Euler equations) needs to be solved. Here αn

i,in,j

and αn
i are the volume fractions of cell Ci,in,j and

Ci, respectively (see also Fig. 2). The obtained
numerical fluxes related to their corresponding
partial surface area are then used to update the
space average of conserved variables. Appendix A
details how to deal with the non-conservative flux
term involved in (1), and also summarize both the
conservative and non-conservative numerical fluxes
required in DEM/RDEM to update the space
averages.

It should be underlined that, in multi-D
DEM/RDEM, the numerical interface veloci-
ties in (5) and (6) are provided by the local 1D
two-phase (reactive) Riemann problem solution,
which aims at approximating (3) and thus at
updating the volume fraction.

In the case of reactive interface with mass transfer,
the conservative flux Fk, together with interfacial
fluxes Mk,I and Gk,I in (4) are solved all at once
(Mk,I + Gk,I corresponds to the Lagrangian Flux,
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Ci,in,1

Ci,in,2

Ci,in,3

Ci,out,4

Ci,out,5

Ci

∂Ci,in,2

∂Ci,out,4

D
n
i,in,2

D
n
i,out,4

ni,in,2

ni,out,4

−ni,in,2

~z

Figure 1: A typical two dimensional Finite Volume element. Illustration of (Reactive) Discrete Equations Method
(DEM/RDEM). At each intercell boundary, resolutions of two or three local Riemann problems for (reactive) Euler equa-
tions are required among four possibilities. ~z is perpendicular to the 2D domain. The obtained numerical interface velocities
and fluxes related to their corresponding partial surface area are then used to update the volume fraction and space average of
conserved variables, respectively [35]. Grey represents phase Σ1, and white is phase Σ2.

as explained in Appendix A) inside the 1D local
reactive Riemann solver for Euler equations with-
out performing operator splitting (similar to [25]),
which differs from some works in the literature
for the solution of Baer-Nunziato type model, for
instance [39] where the mass transfer Mk,I · ∇αk

is modeled by Gibbs free energy relaxation terms.
Let us emphasize the Rankine–Hugoniot jump
relations applied in the 1D reactive Riemann solver
across the reactive shock (see also Appendix A)
guarantee the interface conservation conditions in
the normal direction of cell boundaries (where the
reactive Riemann problem is solved).

As previously pointed out in [34, 35, 33], the
DEM/RDEM algorithm is essentially focused on
the topological transport equation (2). In fact,
once (2) is properly solved, it only remains to
update the conserved variables in each partition
volume region using the solution of local Riemann
problems (see [35, Section 3.1] and Appendix A).

Thus, let us now mainly focus on the scalar
topological equation (2) and on how to derive the
multi-D UDCS scheme, a 1D version of which was
previously proposed in [35] in the framework of
DEM/RDEM. For the sake of simplicity, a two
dimensional case only is presented here but note

the ideas that are developed also hold for 3D
problems. The phase index k is omitted from now
on in this section since the UDCS scheme is the
same for both phases.

The multi-D version of the first-order upwind
DEM/RDEM scheme [1, 35] on unstructured
meshes for the topological equation (2) can be sum-
marized as follows

αn+1,up
i = αn

i +
∑

j∈{in}

∆upn
i,in,j

|Ci|
, (7)

with |Ci| the volume of Ci and ∆upn
i,in,j the volume

of Σk entering into Ci through the inlet boundary
∂Ci,in,j and defined by

∆upn
i,in,j =

(

αn
i,in,j − αn

i

)

|∂Ci,in,j |
∣

∣Dn
i,in,j · ni,in,j

∣

∣∆t,
(8)

with |∂Ci,in,j | the interfacial surface area of ∂Ci,in,j .

Scheme (7) is graphically described in Fig. 2 and
Fig. 3. An inlet cell boundary ∂Ci,in,j (see Fig.
1) is considered in Fig. 2. The volume ∆upn

i,in,j

contributes to the updating of volume fraction in
cell Ci. A detailed derivation of ∆upn

i,in,j from the
discretization of non-conservative flux term in (1)
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Σ1
Σ1

Σ1

Σ2Σ2

~z (perpendicular to 2D domain)

∣

∣D
n
i,in,j · ni,in,j

∣

∣∆t

−ni,in,jCi,in,j Ci

∂Ci,in,j

1

0

∆upn
i,in,j

αn
i,in,j

αn
i

Figure 2: Multi-D (Reactive) Discrete Equations Method
(DEM/RDEM) on unstructured grids. The ~z direction along
which α is measured is perpendicular to the considered 2D
domain. Phase Σ1 and Σ2 are respectively displayed in grey
and white. Two single-phase and one two-phase (reactive)
local Riemann problems for Euler equations require to be
resolved. The numerical interface enters inside Ci, which
generates a positive volume ∆upn

i,in,j
of Σ1.

Σ1
Σ1

Σ1

Σ2Σ2

~z (perpendicular to 2D domain)

D
n
i,out,j · ni,out,j∆t

ni,out,jCi,out,jCi

∂Ci,out,j

1

0

∆upn
i,out,j

αn
i,out,jαn

i

Figure 3: Multi-D (Reactive) Discrete Equations Method
(DEM/RDEM) on unstructured grids. The ~z direction along
which α is measured is perpendicular to the considered 2D
domain. Phase Σ1 and Σ2 are respectively displayed in grey
and white. Two single-phase and one two-phase (reactive)
local Riemann problems for Euler equations require to be
resolved. The numerical interface goes toward the outside
of Ci, which does not contribute to the volume fraction up-
date for cell Ci. Meanwhile, it generates a positive volume
∆upn

i,out,j
of Σ1 for the adjacent cell Ci,out,j .

can be found in Appendix A.

On the other hand, when an outlet cell boundary
∂Ci,out,j is concerned as illustrated in Fig. 3, the

generated volume

∆upn
i,out,j =

(

αn
i − αn

i,out,j

)

|∂Ci,out,j | Dn
i,out,j · ni,out,j∆t.

(9)

does not contribute to the volume fraction updat-
ing for cell Ci. However, this volume should be
taken into account for updating α in the adjacent
cell Ci,out,j .

The upwind formulation (7) can be rearranged as
follows:

αn+1,up
i

= αn
i

(

1 −
∆t

|Ci|

∑

j∈{in}

|∂Ci,in,j |
∣

∣Dn
i,in,j · ni,in,j

∣

∣

)

+
∑

j∈{in}

αn
i,in,j

(∆t

|Ci|
|∂Ci,in,j |

∣

∣Dn
i,in,j · ni,in,j

∣

∣

)

.

(10)

Since the time step ∆t is imposed in practice so as
to satisfy:

∆t ≤ min
i

|Ci|
∑

j∈{in}

|∂Ci,in,j |
∣

∣Dn
i,in,j · ni,in,j

∣

∣

, (11)

the quantity αn+1,up
i in (10) can thus be viewed as

an average value between αn
i and the set of values

{αn
i,in,j} for its inlet neighbors {Ci,in,j}. This av-

erage value obviously satisfies the local Extremum
Diminishing (LED) property [21]:

αn+1
i ∈ [mn

i , Mn
i ]. (12)

where the local maximum and minimum values for
Ci in (12) are computed as follows:

mn
i,in,j = min{αn

i , αn
i,in,j},

Mn
i,in,j = max{αn

i , αn
i,in,j},

mn
i = minj{mn

i,in,j},

Mn
i = maxj{Mn

i,in,j}.

(13)

It is worthwhile to notice that, when solving the
scalar equation (2), the time step restriction (11) is
a sufficient (but not necessary) condition to satisfy
(12). Indeed, due to the inequality

∣

∣

∣

∣

∣

∣

∑

j∈{in}

∆upn
i,in,j

∣

∣

∣

∣

∣

∣

≤
∑

j∈{in}

∣

∣∆upn
i,in,j

∣

∣ ,

6



a larger ∆t than the one given by (11) could still
be able to ensure the LED condition (12).

Following the downwind factor idea introduced in
[35, Section 5], and using the first-order Euler time
discretization, the high resolution UDCS scheme
designed for the multi-dimensional case reads:

αn+1
i = αn

i +
∑

j∈{in}

(1 − λn
i,in,j)

∆upn
i,in,j

|Ci|

+
∑

j∈{out}

λn
i,out,j

∆upn
i,out,j

|Ci|
,

(14)

or if including the “upwinded” state αn+1,up
i ,

αn+1
i = αn+1,up

i +
∑

j∈{in}

(−λn
i,in,j)

∆upn
i,in,j

|Ci|

+
∑

j∈{out}

λn
i,out,j

∆upn
i,out,j

|Ci|
.

(15)

Note all downwind factors {λ} have been assumed
to be such that

0 ≤ λ ≤ 1.

Let us note that:

a) The scheme defined by (14) or (15) degenerates
into the first-order upwind scheme when all the
downwind factors vanish.

b) On the other hand, an unstable downwind
scheme is recovered if setting all the downwind
factors to unity.

Scheme (14) or (15) can be interpreted as follows: a
part of the volume ∆upn

j generated and transported
across the boundary ∂Ci,j by the first-order upwind
method is moved back to its upwind cell (this part
or volume percentage is precisely the downwind fac-
tor λn

j ) . That is, based on the upwind result in Ci,
the quantity

λn
i,in,j∆upn

i,in,j

is returned to the inlet neighbor Ci,in,j , and on the
other hand the quantity

λn
i,out,j∆upn

i,out,j

is retrieved from the outlet neighbor Ci,out,j . Large
values of the downwind factors {λn

i,in,j , λn
i,out,j},

make the scheme accurate but at the same time
these downwind factors must be such that they al-
low the local LED condition (12) to remain satis-
fied.

2.1. UDCS second-order approach

As previously done in [35, Section 5] for a 1D prob-
lem, the UDCS second-order accurate scheme can
be obtained by using a slope limiting strategy. In
this framework, the value of the downwind factor
λn

i,out,j for an outlet boundary is determined by

λn
i,out,j =

αn
i − αn

f,out,j

αn
i − αn

i,out,j

, when αn
i , αn

i,out,j . (16)

The quantity αn
f,out,j in (16) is the reconstructed

value at the boundary ∂Ci,out,j within cell Ci using
a slope limiter. The value of the downwind factor
λn

i,in,j for an inlet boundary is determined analo-
gously:

λn
i,in,j =

αn
i,in,j − αn

f,i,in,j

αn
i,in,j − αn

i

, when αn
i , αn

i,in,j . (17)

Quantity αn
f,i,in,j in (17) is the reconstructed value

at the boundary ∂Ci,in,j within cell Ci,in,j using a
slope limiter.

A modified version of the multi-dimensional Barth-
Jespersen limiter is used in this work to obtain the
reconstructed values αn

f,out,j and αn
f,i,in,j on volume

fraction, and also those on primitive variables. De-
tails on this multi-dimensional limiting strategy can
be found in Appendix B.

2.2. UDCS anti-diffusive approach: an original al-
gorithm of anti-diffusive scheme on unstruc-
tured grids

As an alternative to the previous strategy and for
the sake of simplicity, a unique value of the down-
wind factor λn

i,out defined for cell Ci can be imposed
for all the outlet boundaries {∂Ci,out,j}:

λn
i,out,j = λn

i,out, for any j.

Thus, by defining

∆upn
i,out =

∑

j∈{out}

∆upn
i,out,j
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for cell Ci, condition (12) is rewritten as the follow-
ing inequalities:

αn+1
i = αn

i +
∑

j∈{in}

(1 − λn
i,in,j)

∆upn
i,in,j

|Ci|

+λn
i,out

∆upn
i,out

|Ci|
≥ mn

i ,

(18)

αn+1
i = αn

i +
∑

j∈{in}

(1 − λn
i,in,j)

∆upn
i,in,j

|Ci|

+λn
i,out

∆upn
i,out

|Ci|
≤ Mn

i .

(19)

It can be easily verified that, when setting λn
i,out =

0, both (18) and (19) are fulfilled for any value of
λn

i,in,j by writing αn+1
i as an average between αn

i

and the values of its inlet neighbors {αn
i,in,j} as sim-

ilarly done in the formulation (10):

αn+1
i = αn

i

(

1 −
∆t

|Ci|

∑

j∈{in}

(1 − λn
i,in,j) |∂Ci,in,j |

∣

∣Dn
i,in,j · ni,in,j

∣

∣

)

+
∑

j∈{in}

αn
i,in,j

(

∆t

|Ci|
(1 − λn

i,in,j) |∂Ci,in,j |
∣

∣Dn
i,in,j · ni,in,j

∣

∣

)

.

(20)

Note (20) can be interpreted as an average, since
the stability condition (11) allows to establish the
following inequality :

∆t

|Ci|
(1 − λn

i,in,j) |∂Ci,in,j |
∣

∣Dn
i,in,j · ni,in,j

∣

∣

≤
∆t

|Ci|

∑

j∈{in}

(1 − λn
i,in,j) |∂Ci,in,j |

∣

∣Dn
i,in,j · ni,in,j

∣

∣

≤
∆t

|Ci|

∑

j∈{in}

|∂Ci,in,j |
∣

∣Dn
i,in,j · ni,in,j

∣

∣

≤ 1.

(21)

Furthermore, the following results can also be
established:

a) if ∆upn
i,out < 0, (19) is satisfied;

b) if ∆upn
i,out > 0, (18) is satisfied.

It thus follows, from (18) and (19), the restrictive
conditions for the downwind factors can be summa-
rized as:

0 ≤ λn
i,out ≤ 1; (22)

0 ≤ λn
i,in,j ≤ 1, ∀j; (23)

λn
i,out ≤

1
∣

∣∆upn
i,out

∣

∣

[

|Ci| (αn
i − mn

i ) +

∑

j∈{in}

(1 − λn
i,in,j)∆upn

i,in,j

]

, if ∆upn
i,out < 0;

(24)

λn
i,out ≤

1
∣

∣∆upn
i,out

∣

∣

[

|Ci| (Mn
i − αn

i ) −

∑

j∈{in}

(1 − λn
i,in,j)∆upn

i,in,j

]

, if ∆upn
i,out > 0.

(25)

It is certain that the system of inequalities (22)-(25)
admits solutions {λn

i,out} (for instance, λn
i,out = 0

is inside its solution region for any λn
i,in,j). Unfor-

tunately in (22)-(25) all the intercell boundaries
are coupled. An easy way to find one solution is
to determine, in each cell, the downwind factor
λn

i,out for the outlets, by supposing that the worst

situation2 occurs at the inlets. Let us consider
inequality (24) for the sake of demonstration.

If we have, for the intercell inlet boundary ∂Ci,in,j ,

∆upn
i,in,j > 0,

then the worst value of λn
i,in,j to ensure (24) is unity.

On the other hand, if

∆upn
i,in,j < 0,

then the worst situation is when λn
i,in,j vanishes.

These considerations lead to the worst sufficient
condition for (24):

λn
i,out ≤ Λ

n,(−)
i , (26)

2In the present case, “worst situation” means the maxi-
mum downwind factor λn

i,out
to be determined with the sys-

tem (22)-(25) will take its smallest value.
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where the critical value Λ
n,(−)
i reads

Λ
n,(−)
i =

1
∣

∣∆upn
i,out

∣

∣

[

|Ci| (αn
i − mn

i ) +

∑

j∈{in}

1

2

(

1 − sign(∆upn
i,in,j)

)

∆upn
i,in,j

]

,

for ∆upn
i,out < 0.

(27)

It must be emphasized that Λ
n,(−)
i in (27) can be

explicitely computed, while (24) is complex to deal
with since coupling all the intercell boundaries. Us-
ing the definition (8), expression (27) can be further
modified into:

Λ
n,(−)
i =

|Ci|
∣

∣∆upn
i,out

∣

∣

[

αn
i

(

1 −
∆t

|Ci|

∑

j∈{in}

1

2

(

1 − sign(∆upn
i,in,j)

)

|∂Ci,in,j |
∣

∣Dn
i,in,j · ni,in,j

∣

∣

)

+
∑

j∈{in}

αn
i,in,j

(

∆t

|Ci|

1

2

(

1 − sign(∆upn
i,in,j)

)

|∂Ci,in,j |
∣

∣Dn
i,in,j · ni,in,j

∣

∣

)

− mn
i

]

.

(28)

Using the same line of idea than the one applied in
(20) and (21), the critical downwind factor given by
(28) can be shown to be non-negative. Keeping in
mind the condition (22), the final optimized down-
wind factor, denoted by λn

i,out, can be eventually
derived and takes the following value:

λn
i,out = min{Λ

n,(−)
i ; 1}, for ∆upn

i,out < 0. (29)

The case where ∆upn
i,out > 0 can be treated in the

same manner. It can thus be concluded that the
final result for the optimized downwind factor in
the general case reads as follows:

λn
i,out =











min{Λ
n,(−)
i ; 1}, for ∆upn

i,out < 0;

min{Λ
n,(+)
i ; 1}, for ∆upn

i,out > 0.

(30)

where Λ
n,(−)
i and Λ

n,(+)
i are respectively expressed

as:

Λ
n,(−)
i =

1
∣

∣∆upn
i,out

∣

∣

[

|Ci| (αn
i − mn

i ) +

∑

j∈{in}

1

2

(

1 − sign(∆upn
i,in,j)

)

∆upn
i,in,j

]

,

(31)

Λ
n,(+)
i =

1
∣

∣∆upn
i,out

∣

∣

[

|Ci| (Mn
i − αn

i ) −

∑

j∈{in}

1

2

(

1 + sign(∆upn
i,in,j)

)

∆upn
i,in,j

]

.

(32)

2.3. High-order solution of the whole two-phase
system

The solution procedure for the multi-dimensional
UDCS applied to the full two-fluid system (1)
remains similar to the description given in the
previously published one dimensional case paper
[35, Section 5.2]. In fact, scheme (14) or (15)
applied to (1) expresses the idea of redistributing
volume, mass, momentum and energy at a nu-
merically diffused interface region with the global
conservation condition satisfied.

When the UDCS second-order scheme is applied,
the primitive variables (density, pressure, and
velocity) can be reconstructed by a modified
multi-dimensional Barth-Jespersen limiter (see
Appendix B for a detailed description). Alter-
natively, when the UDCS anti-diffusive scheme is
applied, the reconstruction stands for the volume
fraction only because it was found the robustness
of the UDCS anti-diffusive was reduced when all
primitive variables were reconstructed.

In the following section devoted to the application
of the proposed numerical strategy to non-reactive
and reactive two-dimensional problems, a recon-
struction for the volume fraction only will be
retained for the non-reactive problems (shock
bubble interactions) computed using both UDCS
second-order scheme and UDCS anti-diffusive
scheme, in order to assess the sole influence of the
numerical treatment of the volume fraction evolu-
tion equation. A reconstruction for all primitive
variables will be performed in the combustion test
case for the UDCS second-order scheme.

Regarding time-accuracy, either a first-order Eu-
ler explicit scheme or a second-order Runge–Kutta
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predictor–corrector scheme can be used with the
UDCS second-order scheme. Coupling the UDCS
anti-diffusive scheme with a second-order Runge-
Kutta time integration was not found to yield a
sufficiently robust numerical strategy. In the follow-
ing section, the non-reactive shock bubble interac-
tion problems will thus be solved using a first-order
Euler explicit scheme for both the UDCS second-
order and the UDCS anti-diffusive schemes. The
UDCS second-order scheme will be combined with
the second-order Runge-Kutta time-integration for
the combustion problem, while the UDCS anti-
diffusive scheme will remain applied with the first-
order Euler time discretization.

3. Numerical results

This section is devoted to the application of the
UDCS DEM/RDEM approach to two dimensional
non-reactive and reactive interface problems
computed on unstructured grids. The test cases
have been selected so that they display physical
features and numerical difficulties representative
of those encountered for real-life applications (full
reactor containment for instance). The geometries,
though academic, are meshed using unstructured
grids made of quadrangular and triangular ele-
ments which allow an assessment of the UDCS
DEM/RDEM sensitivity to the grid topology.

The first non-reacting test case is the interaction
between a shock moving through air and a bubble
of heavy gas initially at rest in the surrounding
air. This classical test problem for multiphase
solvers has been previously computed for instance
in [28, 31, 27, 3, 6, 22, 23, 37, 26]. The computed
solutions obtained using UDCS and DEM will
be compared to available experimental data and
comments will be also provided with respect to
some of the numerical results available in the
literature.

The second non-reacting test problem is, again, the
interaction between a shock and a bubble but the
bubble is now made of a light gas and immersed in
a liquid medium. This problem has been analyzed
in [22] using an anti-diffusive strategy applied to
a reduced two-fluid model with a single pressure
and a single velocity. Note that, as a multi-D
extension to the one dimensional liquid-gas inter-
face computed in [35, Section 6.1], this two-phase
shock bubble problem is made especially difficult

by the very high ratio of both pressure and density
between the liquid and gaseous phases. In addition,
the multi-dimensional expansion wave appearing
in the liquid phase may often produce negative
pressures which are likely to cause in turn serious
numerical difficulties. As a matter of fact, even
the theoretically robust (but inaccurate) first-order
upwind DEM method fails to compute this flow
on triangular grids because the occurrence of a
negative pressure in the liquid phase prevents from
maintaining a physical sound speed (the computed

quantity c2 = γ(p+p∞)
ρ becomes negative). The

stability of the UDCS approach being that of the
first-order approach, UDCS calculations can not be
performed either on such triangular grids. Thus,
calculations on unstructured quadrangular grids
only will be performed with UDCS for this very
demanding test case.

Finally, a one dimensional line-symmetric steady
deflagration test problem will be computed as a
demonstration reacting test-case, using UDCS and
RDEM on a two dimensional quadrangular grid.
The numerical results obtained will be compared
with an available one dimensional reference solu-
tion. Note that, from a physical viewpoint, this ref-
erence solution for the multi-dimensional reactive
Euler equations is in fact unstable since the stabil-
ity of a cylindrical/spherical flame is guaranteed by
the competition between thermal and species dif-
fusion effects which are neglected in the reactive
Euler equations. This inviscid solution can be used
nonetheless for the sake of an analytical/numerical
comparison since it can be seen as a 1D cylindrical
average of the multi-dimensional solution.

3.1. Gaseous non-reacting shock bubble interaction

The present shock bubble test case is well docu-
mented, both from a numerical viewpoint (previous
computational investigations have been performed
in [28, 31, 22, 26]) and an experimental viewpoint
(visualizations and quantitative results are pro-
vided in [19]).

The flow problem consists in simulating the impact
of a Mach 1.22 shock traveling through air (light
gas) onto a cylinder of R22 gas (heavy gas). The
configuration is thoroughly described in Fig. 4.
The cylinder of R22 gas is surrounded by air within
a 445 mm × 89 mm rectangular computational do-
main. At t = 0, the cylinder is at rest and its

10



front side back side

air shock front

R22

275 mm

8
9

m
m

445 mm

r = 25 mm

x = 225 mm

y = 44.5 mm

~x

~y

Figure 4: Initial configuration for the air-R22 shock problem.

center is located at (x, y) = (225 mm, 44.5 mm).
The initial radius of the cylinder (or gas bubble) is
r = 25 mm. The planar shock is initially located at
x = 275 mm and moves from right to left towards
the cylinder. The interaction between the material
interface and the shock wave, coming from the light
gas region into the heavy gas region, generates a
system of waves which includes, at the early stage
of the interaction, an incident shock wave in air, a
refracted shock wave in the R22 bubble, a material
interface and a reflected shock wave in air. Due
to the smaller speed of sound in the R22 gas,
the refracted shock wave in R22 propagates more
slowly than the incident shock wave in air.

Both fluids (air and R22) are described by a poly-
tropic EOS. The initial conditions and the fluid
properties are summarized in Table 1. The top
and bottom boundary conditions are set as solid
walls while constant state boundary conditions are
imposed on the left and right boundaries which are
not reached by the propagating waves at the final
time of the simulation.

In Fig. 5, experimental Schlieren images taken from
[19] are displayed on the first column and com-
pared with the numerical solutions provided by 2
different numerical strategies, relying on DEM and
UDCS for the volume fraction equation but with
a second-order approach (reconstruction with the
modified Barth-Jespersen limiter) or anti-diffusive
approach, each of these strategies being applied on
a quadrangular or triangular grid. The presentation
of the results in Fig. 5 is organized as follows:

a) column 2: UDCS second-order method with re-

construction by the modified Barth-Jespersen
limiter, on a 1000 × 200 quadrangular mesh.

b) column 3: UDCS second-order method with re-
construction by the modified Barth-Jespersen
limiter, on a 1000 × 200 × 2 triangular mesh
(meaning each quadrangular cell of the previous
grid has been split into two triangles).

c) column 4: UDCS and anti-diffusive approach,
on a 1000 × 200 quadrangular mesh.

d) column 5: UDCS and anti-diffusive approach,
on a 1000 × 200 × 2 triangular mesh.

In all cases, the Euler explicit scheme is used for
time discretization, with a CFL value set to 0.4.
No reconstruction on the primitive variables is per-
formed. As done in [19], the results are displayed
around the R22 gas bubble at several time instants
(measured relative to the moment when the shock
wave first interacts with the bubble boundary at
time t = 60 µs). For the sake of conciseness, only
a selection of the experimental snapshots has been
retained but the reference used to design each
instant is kept consistent with the one used in the
experimental work [19], namely: (b) t = 115 µs,
(d) t = 187 µs, (g) t = 342 µs, (h) t = 417 µs,
(i) t = 1020 µs. A first qualitative analysis of the
UDCS/DEM numerical results, on both triangular
and quadrangular meshes, allows to conclude the
computed solutions are globally in good agreement
with the experimental data in [19] (and also with
previous numerical results such as [28, 31, 22]).
Moreover, it can be observed on the density map-
pings that the interface resolution is significantly
improved when the UDCS anti-diffusive method is
employed, be it on the quadrangular or triangular
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Location ρ (kg m−3) p (Pa) ux (m s−1) uy (m s−1) γ

Air (back side) 1.686 1.59 × 105 -113.5 0 1.4

Air (front side) 1.225 1.01325 × 105 0 0 1.4

R22 3.863 1.01325 × 105 0 0 1.249

Table 1: Air-R22 shock cylinder interaction test. EOS coefficients and initial data.

Figure 5: Air-R22 shock cylinder interaction test. Numerical results for density profile. From left to right: experimental results
in [19], UDCS second-order method with 1000 × 200 quadrangular mesh, UDCS second-order method with triangular mesh of
1000 × 200 × 2 cells, UDCS anti-diffusive method with 1000 × 200 quadrangular mesh, and UDCS anti-diffusive method with
triangular mesh of 1000 × 200 × 2 cells. Five instants are selected from [19]: (b) t = 115 µs, (d) t = 187 µs, (g) t = 342 µs,
(h) t = 417 µs, (i) t = 1020 µs.

grid. It is in particular interesting to notice that
the UDCS anti-diffusive method works well on
the triangular mesh: the interface instabilities (of
Richtmyer-Meshkov and Kelvin-Helmholtz type,
see [27]) are clearly observed in Fig. 5 (i). The

UDCS anti-diffusive approach is proved capable
of resolving vortex structure and interface insta-
bility on a relatively coarse mesh while a (much)
higher grid resolution would be required for many
state-of-the-art methods (see for instance [27] or
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Figure 5: (continued)

even the more smeared interface computed using
UDCS in its second-order version instead of the
anti-diffusive version).

The various numerical approaches are now more
quantitatively compared by analyzing the volume
fraction and the mixture density at the final
computational time. The results in Fig. 6 are
plotted along the axis of symmetry (+x direction),
in the region occupied by the bubble. Three in-
creasingly refined quadrangular meshes (250 × 50,
500 × 100, 1000 × 200) and three increasingly
refined triangular meshes are used for accuracy
comparison. Let us recall that each triangular
mesh is built from the one of the quadrangular
mesh by dividing each cell into two triangles so
that the triangular grid is twice finer than the
corresponding quadrangular mesh. On each grid,
the UDCS second-order approach and UDCS
anti-diffusive approach have been applied. The
first line of Fig. 6 illustrates the grid-convergence
of the computations performed using the UDCS
anti-diffusive approach. The results displayed
on the second line show that, on quadrangular
grids, the UDCS anti-diffusive approach with
500 × 100 quadrangular mesh produces (much)
more accurate results than the UDCS second-order
approach with 1000 × 200 cells. A similar trend is
observed with the triangular grids, when analyzing
the results displayed on the third line: the UDCS
anti-diffusive approach yields again more accurate
results than the UDCS second-order approach with
a crisper interface capturing.

Further plots (Fig. 8 and Fig. 9) are drawn
along the two lines perpendicular to the axis of
symmetry (y direction) whose location over the
final time bubble shape is indicated in Fig. 7. The

grid-convergence of the results can be qualitatively
observed and the UDCS anti-diffusive approach is
still found to be more accurate than the UDCS
second-order approach in general. For instance, in
the second line of Fig. 9 for the volume fraction,
the anti-diffusive method (“Anti 500 × 100”) con-
verges more quickly than “2-nd 500×100” in terms
of both interface position and amplitude. However,
with a finer mesh of “1000 × 200”, UDCS second-
order approach gives a more accurate position of
the interface than “Anti 500×100”. In line with the
triangular mesh results displayed in Fig. 5 for the
UDCS anti-diffusive approach, the interface insta-
bility is visible in the third line of Fig. 8 and Fig. 9.

The pressure time-history is displayed in Fig. 10
for the sake of comparison with [28, 31, 22, 19].
Three locations are retained: xp = 3, 27, 67 mm,
downstream of the R22 gas bubble along the axis
of symmetry. Time is measured from the first
interaction of the shock wave with the bubble at
time t = 60 µs. The UDCS anti-diffusive results on
triangular grids made of 250×50×2, 500×100×2,
and 1000 × 200 × 2 elements are presented so that
grid convergence can be qualitatively checked.
Note that as far as the pressure time-history along
the symmetry axis is concerned, no noticeable
difference is observed when comparing the results
obtained with the UDCS second-order method
and the UDCS anti-diffusive method on the same
mesh. Note also that the pressure peaks are not
as accurately resolved as in [22], where a more
refined (5000 × 1000) quadrangular grid was used.
Moreover, it is worthwhile to mention that, with
the same CFL value, a larger number of time steps
is required for computing the flow evolution with
a full non-equilibrium two-fluid flow model than
with a sub-model, such as the one used in [22]
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Figure 6: Air-R22 shock cylinder interaction test. Plots of volume fraction and mixture density over the axis of symmetry
(x direction) around the R22 bubble. Anti stands for UDCS anti-diffusive approach. 2-nd stands for UDCS second-order
approach. tri stands for triangular mesh.
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Figure 7: Air-R22 shock cylinder interaction test. Positions of y direction lines for plots of volume fraction and mixture density
in Fig. 8 and Fig. 9. From left to right: UDCS anti-diffusive approach with quadrangular mesh of 250 × 50, 500 × 100, and
1000 × 200 cells. Left line is located at x = 136 mm, and right line at x = 155 mm (measured from the left boundary of the
whole domain).

(more information can be found in [39]). This
usually yields results of the full two-fluid model
that are more diffused than the ones obtained with
a sub-model. However, it is emphasized that the
full two-fluid model must be assessed in this work
since it will be necessarily used to compute reactive
fronts on which the pressure and velocity jumps
can be significant.

Finally, the computed characteristic wave speeds
of this shock-cylinder interaction problem are mea-
sured and compared to experimental results in [19]
and to numerical results in [28, 31, 22, 26]. Fig. 11
illustrates the characteristic waves that are consid-
ered in this paper: the incident shock wave (“Inc”
in Fig. 11), the upwind interface wave (“Upw” in
Fig. 11), the downwind interface wave (“Dow” in
Fig. 11), the refracted shock wave (“Ref” in Fig.
11), and the transmitted shock waves (“Tr1” and
“Tr2” in Fig. 11). The incident shock wave speed
is measured at 5 mm above the bottom boundary
(y = 5 mm), while all other waves are evaluated
at the symmetry axis (y = 45 mm). A schematic
drawing of front evolution in time-space diagram of
these characteristic waves is also given in Fig. 11.
The wave trajectories computed using the UDCS
anti-diffusive technique are reported in Fig. 12.
Note that the UDCS second-order approach gives
very similar trajectories (not shown). The charac-
teristic wave speeds estimated using a linear least-

square regression are reported tin Table 2 together
with experimental results in [19] and previous sim-
ulation results in [28, 31, 22, 26]. The speed of the
incident shock wave (Vs) is obtained by using 25
data points over the time-period [0, 250] µs, that
of the refracted shock wave (Vr) by 20 data points
over [0, 200] µs, and that of the transmitted shock
wave (Vt2

, “Tr2” in Fig. 11) by 5 data points over
[200, 250] µs. The initial speeds of upwind and
downwind interfaces (Vui and Vdi, respectively) are
computed by using 40 data points over [0, 400] µs
and by 20 data points over [200, 400] µs, respec-
tively. Those of the final stage (Vuf and Vdf ) are
computed by using 20 data points over [400, 1000]
µs. Note the time is measured from the first inter-
action of the shock wave with the bubble at time
t = 60 µs. Table 2 shows the present results ob-
tained using both UDCS second-order solver and
UDCS anti-diffusive solver agree well with previous
numerical studies and with the experiment.

3.2. Liquid-gas non-reacting shock bubble interac-
tion

In this section, the two dimensional shock bubble
interaction test now involves a lighter gas bub-
ble surrounded by (heavier) liquid water. The
geometry of the initial configuration is described
in Fig. 13. Both fluids are thermodynamically
described by the Stiffened Gas EOS (P∞ = 0 for
the gas). The EOS parameters and the initial fluids
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Figure 8: Air-R22 shock cylinder interaction test. Plots of volume fraction and mixture density over the line located at
x = 155 mm (Fig. 7). "Anti" stands for UDCS anti-diffusive approach. "2-nd" stands for UDCS second-order approach. "tri"
stands for triangular mesh.

16



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

Anti 250x50
Anti 500x100

Anti 1000x200

α (air)

y (mm)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  10  20  30  40  50  60  70  80

Anti 250x50
Anti 500x100

Anti 1000x200

ρ (kg/m3)

y (mm)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

2-nd 500x100
2-nd 1000x200

Anti 500x100

α (air)

y (mm)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  10  20  30  40  50  60  70  80

2-nd 500x100
2-nd 1000x200

Anti 500x100

ρ (kg/m3)

y (mm)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

2-nd tri 500x100x2
2-nd tri 1000x200x2

Anti tri 500x100x2

α (air)

y (mm)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  10  20  30  40  50  60  70  80

2-nd tri 500x100x2
2-nd tri 1000x200x2

Anti tri 500x100x2

ρ (kg/m3)

y (mm)

Figure 9: Air-R22 shock cylinder interaction test. Plots of volume fraction and mixture density over the line situated at
x = 136 mm (Fig. 7). "Anti" stands for UDCS anti-diffusive approach. "2-nd" stands for UDCS second-order approach. "tri"
stands for triangular mesh.
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Figure 10: Air-R22 shock cylinder interaction test. Time history of pressure in three locations: x = 3 mm, x = 27 mm, and
x = 67 mm downstream of the R22 gas bubble along the axis of symmetry. "Anti" stands for UDCS anti-diffusive approach.
"tri" stands for triangular mesh.

states are given in Table 3. Solid wall boundary
conditions are applied for the top and bottom
boundaries while constant states are imposed at
the left and right boundaries.

We underline again that this test case is very
difficult because of the tremendous difference of
density and pressure levels between liquid and

gas. Even the first-order DEM approach does not
successfully compute this problem on a triangular
mesh. Thus, the computational domain is only
discretized using a 300 × 100 quadrangular grid.
The first-order Euler method is used for time
discretization.

Fig. 14 and Fig. 15 display the computed solu-
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Figure 11: Air-R22 shock cylinder interaction test. Top: schematic view of the characteristic waves, namely the incident shock
wave (“Inc”), the upwind interface wave (“Upw”), the downwind interface wave (“Dow”), the refracted shock wave (“Ref”),
and the transmitted shock waves (“Tr1” and “Tr2”). Bottom: evolution of the characteristic waves in the time-space diagram.
The space measurement refers to the distance between the wave front and the first contact position between the bubble and
the incident shock wave (x = 250 mm). The time is measured from the first interaction of the shock wave with the bubble at
time t = 60 µs.

tions (volume fraction and mixture density) using
UDCS and DEM at four time instants. The gas
bubble is transformed into two symmetrical vortices
at the end of the computational period, as also ob-
served in [30, 22]. Compared to the second-order
scheme, the UDCS anti-diffusive approach yields a
much sharper interface profile. This can be fur-

ther (quantitatively) verified by visualizing volume
fraction and mixture density distributions along the
axis of symmetry; such distributions are plotted in
Fig. 16 at time t = 375 µs and in Fig. 17 at
t = 450 µs. This latter time instant corresponds
to the time at which the numerically diffused in-
terface computed with the UDCS second-order ap-
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Figure 12: Air-R22 shock cylinder interaction test. DEM + UDCS anti-diffusive solver is used. The trajectories of the following
characteristic waves are plotted in the time-space diagram: the incident shock wave (Vs), the upwind interface wave (Vui and
Vuf for initial and final stages, respectively), the downwind interface wave (Vdi and Vdf for initial and final stages, respectively),
the refracted shock wave (Vr), and the transmitted shock waves (Vt1

and Vt2
). The space measurement refers to the distance

between the wave front and the first contact position between the bubble and the incident shock wave (x = 250 mm). The
time is measured from the first interaction of the shock wave with the bubble at time t = 60 µs. Top: small time; Bottom:
large time (compared to [19]).

proach interacts with the front side of the bubble.
The sharper interface computed with the UDCS
anti-diffusive approach is well demonstrated. At
t = 450 µs, the anti-diffusive and second-order ap-
proaches start to yield significant difference for the

pressure and density distributions along the sym-
metry axis; in particular, the UDCS anti-diffusive
method predicts a higher pressure in the bubble
zone while the UDCS second-order method tends
to underestimate this pressure level.
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Velocity (m/s) Vs Vr Vt2
Vui Vuf Vdi Vdf

Experiment [19] 415 240 540 73 90 78 78

Quirk and Karni [28] 420 254 560 74 90 116 82

Shyue (tracking) [31] 411 243 538 64 87 82 60

Shyue (capturing) [31] 411 244 534 65 86 98 76

Kokh and Lagoutière (upwind) [22] 411 243 524 66 86 83 62

Kokh and Lagoutière (anti-diffusive) [22] 411 243 525 65 86 85 64

Nonomura et al. (MUSCL) [26] 411 244 530 63 87 103 76

Nonomura et al. (Hyperbolic tangent

interpolation, β = 2.0 and χ = 2.0) [26]
411 243 536 64 86 98 77

DEM + UDCS(second-order) (present paper) 411 244 525 68 87 68 64

DEM + UDCS(anti-diffusive) (present paper) 411 243 525 67 87 68 64

Table 2: Air-R22 shock cylinder interaction test. The computed characteristic wave speeds are compared with experimental
measurements [19] and with previous numerical studies [28, 31, 22, 26]. The following fronts are considered: the incident shock
wave (Vs), the refracted shock wave (Vr), the transmitted shock wave (Vt2

), the upwind interface wave (Vui and Vuf for initial
and final stages, respectively), and the downwind interface wave (Vdi and Vdf for initial and final stages, respectively).

front side

back side water shock front

gas

0.04 m

2 m

1
m

r = 0.4 m

x = 0.5 m

y = 0.5 m

~x

Figure 13: Initial configuration for the liquid-gas shock tube problem [22].

Location ρ (kg m−3) p (Pa) ux (m s−1) uy (m s−1) γ P∞ (Pa)

Water (back) 1030.9 3 × 109 300.0 0 4.4 6.8 × 108

Water (front) 1000.0 105 0 0 4.4 6.8 × 108

Air 1.0 105 0 0 1.4 0

Table 3: liquid-gas shock bubble interaction test. EOS coefficients and initial data.
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Figure 14: Liquid-gas shock bubble interaction test. Contours of the gas volume fraction. On the left: UDCS second-order
DEM scheme; on the right: UDCS anti-diffusive DEM scheme. Four instants from top to bottom: t = 225 µs, 375 µs, 450 µs,
600 µs.

3.3. 2D computation of 1D line-symmetric steady
combustion

This test case has been previously considered in
[4, Section 6.3, pp. 300–303]. A 2D (theoretically)

unbounded domain is filled with a stoichiometric
mixture of (thermally perfect) hydrogen-air at
rest. At t = 0, combustion is initiated in a single
point (the lower left corner of the computational
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Figure 15: Liquid-gas shock bubble interaction test. Contours of the mixture density. On the left: UDCS second-order DEM
scheme; on the right: UDCS anti-diffusive DEM scheme. Four instants from top to bottom: t = 225 µs, 375 µs, 450 µs, 525 µs.

domain) and the test case studies the propagation
of the 1D line-symmetric deflagration wave thus
generated.

The computational domain is a square of side-
length equal to 1 m, discretized with a regular

grid of 400 × 400 quadrangles; the CFL number
is set equal to 0.4. As far as initial conditions
are concerned, initial pressure and temperature
are assumed respectively equal to 1.013 bar
and 290 K. The fundamental speed is given by
K0 = 45.2 m/s. The combustion is “numerically
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Figure 16: Liquid-gas shock bubble interaction test. Plots of pressure, density and air volume fraction over the axis of symmetry
(x direction) at time t = 375 µs.

initiated” by supposing that the hydrogen-air
mixture is burnt in the closest element to the
center of symmetry (the left bottom corner of
the square domain here considered). The initial
pressure and temperature of the burnt gas mix-
ture are equal to 2.013 bar and 2800 K respectively.

An accurate solution of this problem can be
obtained by integrating an ordinary differential
equation, as done in [24]. Alternatively, a reference

solution can be obtained by performing a 1D line-
symmetric computation (as done here) and offers
therefore a point of reference for the numerical
results computed using the UDCS anti-diffusive
approach and RDEM. As previously mentioned,
this solution is not physically meaningful since
diffusion effects should be necessarily included for
a realistic description of a cylindrical/spherical
flame (as pointed out in Borghi [5], a flame
front with zero thickness is bound to be unsta-
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Figure 17: Liquid-gas shock bubble interaction test. Plots of pressure and density over the axis of symmetry (x direction) at
time t = 450 µs.

ble). Still, this solution remains a valid point
of reference for the present inviscid computed
solutions. From now on, the 1D line-symmetric so-
lution will be referred to as the “reference solution”.

In Fig. 18-20 the computed solution at 1.2 ms
is reported for different numerical strategies: the
original first-order RDEM approach (explicit Euler
scheme for time discretization), the (RDEM) UDCS
approach with second-order reconstruction on pres-
sure, density, velocity and volume fraction (second-
order explicit Runge-Kutta scheme for time dis-
cretization), and the (RDEM) UDCS anti-diffusive
approach (explicit Euler scheme for time discretiza-
tion). For each method, the contours of the volume
fraction of the burnt gas and the pressure are re-
spectively displayed on the left and right pictures
of the top line. On the bottom line, the density
(left) and pressure (right) distributions computed
along the x-axis and the diagonal (x = y) of the
computational domain are displayed. The distri-
butions, extracted from the 2D solutions, are also
compared with the reference 1D computation. Be-
fore analyzing the various numerical solutions, it
should be pointed out that, whatever the method
used, the flame propagates at different speeds along
the diagonal and along the axis of the domain. Such
a phenomenon was already observed in [4], where
the solution was obtained using the original RDEM

on a quadrangular regular mesh. In our opinion,
using the original RDEM approach, this behavior
was due to the fact that, when studying 1D reac-
tive Riemann problems at the intercell boundaries,
the cell interface normal ncell can be different from
the flame surface normal. Let us recall that the
total flame velocity [4] is

DI = vunburnt + K0nflame

where vunburnt is the cold gas velocity in front of the
flame interface, K0 the scalar fundamental flame
speed, and nflame the flame surface normal. Here
nflame is computed with the formula

nflame =
< ∇α >

| < ∇α > |
,

where < ∇α > is the numerical gradient of the vol-
ume fraction (see Appendix B for its evaluation).
As shown in [4], if the fundamental flame speed is
supposed to be given by

K0|nflame · ncell|,

instead of

K0|ncell| = K0,

when evaluating the solution of the 1D reactive Rie-
mann problem, directional effects are drastically re-
duced though they do not disappear. This can be
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Figure 18: Propagation of a 1D line-symmetric steady flame. First-order RDEM (explicit Euler scheme for time discretization).
Top: volume fraction of the burnt gas and pressure. Bottom: density and pressure plots along the axis and the left-to-right
diagonal. The reference solution is obtained using a 1D line-symmetric solver and the UDCS anti-diffusive approach.

explained as follows. If the normal to the inter-
cell boundary and the normal to the flame are not
aligned, the solution of the reactive Riemann prob-
lem at the interface is modified. For instance, a
detonation (K0,det given by the merging of the pre-
cursor shock and the reactive shock in the flame

frame) becomes a deflagration because of the scalar
product |nflame ·ncell| which reduces the value of the
fundamental flame speed. That is, instead of using
a detonation fundamental flame speed

K0,det|nflame| = K0,det,
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Figure 19: Propagation of a 1D line-symmetric steady flame. (Quasi) second-order UDCS + RDEM, with limited reconstruc-
tion (by the modified Barth-Jespersen limiter) for all primitive variables (second-order explicit Runge-Kutta scheme for time
discretization). Top: volume fraction of the burnt gas and pressure. Bottom: density and pressure plots along the axis and
the left-to-right diagonal. The reference solution is obtained using a 1D line-symmetric solver and the UDCS anti-diffusive
approach.

one is actually using a deflagration speed:

K0,det|nflame · ncell| → deflagration.

Numerical experiments (not reported here) for

different values of K0, from fast deflagration to
detonation, on cylindrical and spherical flows have
shown that the numerical solution, even though
not converging to the exact solution, remains
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Figure 20: Propagation of a 1D line-symmetric steady flame. UDCS anti-diffusive + RDEM approach (explicit Euler scheme
for time discretization). Top: volume fraction of the burnt gas and pressure. Bottom: density and pressure plots along the axis
and the left-to-right diagonal. The reference solution is obtained using a 1D line-symmetric solver and the UDCS anti-diffusive
approach.

acceptably close to it for the targeted applications
(computed pressure waves are slightly higher than
the exact ones but this can be considered as
normal since due to the reactive wave instability).
Since this directional effects issue is related to the

RDEM framework itself, let us proceed nonetheless
with the assessment of UDCS. In what follows, the
normal to the flame interface is computed with
the formula nflame = <∇α>

|<∇α>| and K0|nflame · ncell|

defines the fundamental flame speed.
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Figure 21: Propagation of a 1D line-symmetric steady flame. UDCS anti-diffusive + RDEM approach (explicit Euler scheme
for time discretization), in which normals at the flame interface are forced to be equal to the ones of the reference solution
(namely nflame = (x/r, y/r)). Top: volume fraction of the burnt gas and pressure. Bottom: density and pressure plots along
the axis and the left-to-right diagonal. The reference solution is obtained using a 1D line-symmetric solver and the UDCS
anti-diffusive approach.

As can be observed in Fig. 18-20 , the numerical
results in closest agreement with the reference so-
lution are those given in Fig. 18 by the first-order

RDEM (displaying the highest numerical diffusion).
The results obtained in Fig. 19 using UDCS with
second-order reconstruction and RDEM are less dif-
fused than the ones given by the first-order recon-

29



struction, with the propagation speed of the flame
along the axis and the diagonal remaining almost
the same. The flame interface shape is not circu-
lar; this is expected since the reference solution is
unstable. The pressure level in the burnt gas ap-
pears higher than the one given by the first-order
approach. This is due to the fact that as the flame
surface wrinkles, the quantity of unburnt gas which
burns per time unit increases. This phenomenon
increases in turn the release of chemical energy per
time unit and thus the pressure. Finally, in the
UDCS anti-diffusive solution displayed in Fig. 20,
it can be noticed that the volume fraction is less
diffused than in the other solutions but the flame
is much faster on the axis than on the diagonal.
The reason for this behavior can be traced back
to the flame interface normal evaluation with the
formula <∇α>

|<∇α>| ; while this expression works well

as long as α is smooth enough, it tends to yield
spurious normal estimates when applied with very
sharp interfaces, such as the ones produced by the
UDCS approach. In order to distinguish between
the front capturing properties of the UDCS anti-
diffusive approach and the numerical flame propa-
gation issue, a last set of results was obtained using
RDEM and UDCS anti-diffusive approach with the
flame interface normal artificially set equal to the
normal computed from the 1D line-symmetric so-
lution (namely nflame = ( x

r , y
r )). As observed in

Fig. 21, the propagation velocities are almost the
same in all directions in that case and the solution
remains less diffused than in the other approaches
(first-order RDEM and RDEM with UDCS second-
order approach), as expected.

3.4. Concluding remarks on numerical results

The UDCS anti-diffusive approach was found to
yield a higher to much higher resolution of both
non-reactive and reactive material interfaces with
respect to the resolution provided by the UDCS
second-order approach. This improved accuracy
for the anti-diffusive strategy was achieved with no
restriction on stability with respect to the limited
second-order approach. It was also noticed that
the UDCS anti-diffusive approach is in fact more
efficient than the second-order limited method.
As already mentioned in [35], this better overall
efficiency comes from the reduced number of two-
phase (non-reactive or reactive) Riemann problems
which have to be solved in the DEM/RDEM frame-
work when the material interface is numerically less

diffused thanks to the UDCS anti-diffusive strategy.

4. Conclusions & perspectives

Following the previous work [35] where a UDCS
scheme has been combined with the (Reactive)
Discrete Equations Method (DEM/RDEM) to
compute with second-order accuracy and a very
good efficiency one dimensional non-reacting and
reacting two-fluid flows, the present contribution
has described the multi-dimensional extension of
this DEM/RDEM UDCS approach on general
unstructured meshes and has applied this ap-
proach to several 2D demanding test problems
for non-reacting (gaseous and liquid-gas shock
bubble interactions) and reacting (combustion
fronts) two-fluid flows. Note the added value
of the proposed strategy, when compared for
instance to [22], lies in its ability to success-
fully deal with permeable fronts, particularly all
speed reactive fronts in the targeted applications,
via the reactive Riemann solver for Euler equations.

The superior accuracy achieved with the anti-
diffusive version of UDCS, be it with DEM or
RDEM, with respect to a baseline second-order
UDCS DEM/RDEM approach has been initially
demonstrated for 1D problems in [35] and clearly
confirmed in the present contribution for 2D flows
corresponding to a large spectrum of physical
conditions.

The DEM/RDEM UDCS approach also offers
attractive robustness properties. Indeed, the
UDCS approach (either limited second-order or
anti-diffusive) with DEM/RDEM is proved as
stable as the first-order DEM/RDEM version with
piecewise constant volume fractions. This property
results from the two-step strategy involved in
UDCS: the first “upwind” step fully contains the
first-order upwind DEM/RDEM approach, which
takes into account all first-order wave propagations,
including in particular the genuinely nonlinear
waves; the second “downwind-controlled splitting”
step aims at improving the accuracy of the linearly
degenerate wave (i.e., the contact discontinuity for
non-reacting Stiffened Gas flow and the reactive
shock for reacting gas flow), by splitting the phase
volumes and rearranging them in space. This
is actually an idea of redistribution of volume,
mass, momentum and energy at the numerically
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diffused interface region, by respecting the global
conservation condition. Since this step does not
involve the time evolution and that the genuinely
nonlinear waves have been taken into consideration
within the previous step by upwind strategy, the
stability of the first-order DEM/RDEM method
with piecewise constant volume fraction data is
thus recovered using UDCS.

Let us also mention the UDCS limited second-
order method has already been combined with the
explicit two-step Runge-Kutta scheme (Predictor-
Corrector scheme) for time discretization (see the
combustion test case in Section 3.3). This allows to
work with large enough CFL numbers when using a
limited second-order reconstruction on all primitive
variables (achieving quasi second-order accuracy
in space and time). Unfortunately, it was found
more difficult to couple the anti-diffusive UDCS
approach with the second-order Runge-Kutta
scheme (in the multi-dimensional case), so that
achieving second-order accuracy both in space and
time for multi-dimensional problems still requires
further investigation.

Finally, as observed on the final 2D combustion
problem, it will also be necessary to improve the
approach used to compute the normal at the flame
interface so as to avoid that the computation
of this normal spoils the accuracy improvement
brought by the anti-diffusive UDCS/RDEM. Note
however that the second-order UDCS/RDEM ap-
proach, which represents a significant improvement
of the classical second-order RDEM approach in
terms of robustness, is now implemented in the
fast dynamic fluid-structure interaction code EU-
ROPLEXUS [12] to compute reacting flows in 3D
large geometries [32, 38, 14] (e.g. the containment
of the European Pressurized Reactor (EPR) [13]).
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Appendix A. Non-conservative flux term
treatment and summary of
numerical fluxes for multi-D
DEM/RDEM

Appendix A.1. Discretization of the non-
conservative flux term

The following Baer-Nunziato type multiphase flow
model for phase Σk is considered in this work:

∂ (αkUk)

∂t
+∇· (αkFk) = (Fk,I −Uk,IDI) ·∇αk.

(A.1)

The (Reactive) Discrete Equations Method belongs
to the Finite Volume family. Hence, the numerical
discretization of the conservative flux term

∇ · (αkFk)

remains similar to what is done for classical conser-
vation laws. The more delicate part is to deal with
the non-conservative flux term

(Fk,I − Uk,IDI) · ∇αk. (A.2)

Note that 1D local Riemann problems for Euler
equations are solved in this paper to evaluate the
numerical fluxes for multi-D problems. Let us con-
sider one inlet cell boundary ∂Ci,in,j (see Fig. 2) of
an unstructured grid for the sake of demonstration.
Note the case of an outlet cell boundary is treated
in the same way. Fig. 2 is reproduced in Fig. A.1
and completed with flux computation details which
are now reviewed. Three local 1D Riemann prob-
lems for Euler equations need to be solved (see also
[35]). Here, we write

(Σk|Σk′)

to represent the 1D local Riemann problem for
Euler equations between phase Σk and Σk′ .

Let us project the non-conservative flux term (A.2)
onto the normal direction ~n (pointing toward the
inside of Ci) of cell boundary ∂Ci,in,j , and write it
as

(Fk,I − Uk,IDI)
∂αk

∂~n
, (A.3)
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t
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Figure A.1: Multi-D (Reactive) Discrete Equations Method
(DEM/RDEM) on unstructured grids. ~z direction is perpen-
dicular to the considered 2D domain. α is measured along
~z. We consider the cell Ci and one of its inlet boundaries
∂Ci,in,j . Two single-phase and one two-phase (reactive) local
Riemann problems for Euler equations require to be resolved.
Grey represents phase Σ1, and white is phase Σ2. The nu-
merical interface enters inside Ci, which generates a positive
volume ∆upn

i,in,j
of Σ1. The Eulerian Fluxes F1(Σ1|Σ1)

and F2(Σ2|Σ2) are related to single-phase Riemann prob-
lems for Euler equations. The Eulerian Flux F1(Σ1|Σ2) and

the Lagrangian Flux F Lag

k,I
(Σ1|Σ2) are related to the two-

phase Riemann problem for (reactive) Euler equations. All
of these four fluxes at the considered cell boundary should
be taken into account to update the phase space averages.
On the top is the representation of an inlet cell boundary at
the diffused interface region; on the bottom is the two-phase
Riemann problem solution for (reactive) Euler equations on
the t − x plane.

with

U =









1
ρ

ρv~n

ρẽt









, F =









0
ρv~n

ρv2
~n + p

ρẽtv~n + pv~n









,

and

v~n = v · ~n,

D = DI · ~n.

From a Finite Volume viewpoint at the discrete
level, with first-order piecewise constant values of
α, at the cell boundary ∂Ci,in,j , it can be observed
that (A.3) only needs to be integrated at the dis-
continuity of α. Noticing that this discontinuity of
α moves into Ci with a velocity D, the following
integration can be carried out for (A.3) across this
discontinuity within a time step ∆t:

∫ ∆t

0

(

∫ D·t+ǫ

D·t−ǫ

(

(Fk,I −Uk,ID)
∂αk

∂~n

)

d~n

)

dt, (A.4)

with ǫ → 0+. Note the Rankine–Hugoniot jump
relation across the moving discontinuity yields

F1,I − F2,I = (U1,I − U2,I)D.

Hence the so-called Lagrangian Flux

F Lag
k,I ≔ Fk,I − Uk,ID (A.5)

is constant for the space integral in (A.4). Note
moreover the local two-phase Riemann problem
for Euler equations provides a self-similar solution.
Thus, the integral (A.4) can be developed into:

(Fk,I − Uk,ID) · (αn
i − αn

i,in,j)∆t. (A.6)

The Lagrangian Flux (A.5) is evaluated on the line

x

t
= D

over the t − x plane for Riemann problem solution.

Finally, the Finite Volume discretization (A.6) for
the non-conservative flux term (A.3), together with
the one for the conservation flux term, is used to
update the space averages

αkUk

in the two-phase system of equations (A.1).

Note that, after also taking into account the total
interfacial surface area |∂Ci,in,j |, the first equation
in (A.6) corresponds to the inlet generated volume
(8) which reads:

∆upn
i,in,j =

(

αn
i,in,j − αn

i

)

|∂Ci,in,j | D∆t,

for the first-order discretization of topological equa-
tion with DEM/RDEM (see the formulation (7)).
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Appendix A.2. Summary of numerical fluxes

The numerical fluxes of conservative and non-
conservative terms (i.e. Eulerian and Lagrangian
Fluxes, respectively) used in the DEM/RDEM ap-
proach, together with their corresponding parti-
tioned area of volume fraction, are summarized as
follows for cell boundary ∂Ci,in,j in the normal di-
rection ~n on Fig. A.1:

a) Phase Σ1 in cell Ci:

F1(Σ1|Σ1) · αn
i

F1(Σ1|Σ2) · (αn
i,in,j − αn

i )

F Lag
1,I (Σ1|Σ2) · (αn

i,in,j − αn
i )

b) Phase Σ1 in cell Ci,in,j :

F1(Σ1|Σ1) · αn
i

F1(Σ1|Σ2) · (αn
i,in,j − αn

i )

c) Phase Σ2 in cell Ci:

F2(Σ2|Σ2) · (1 − αn
i,in,j)

F Lag
2,I (Σ1|Σ2) · (αn

i,in,j − αn
i )

d) Phase Σ2 in cell Ci,in,j :

F2(Σ2|Σ2) · (1 − αn
i,in,j)

Appendix B. Limited variables reconstruc-
tion on unstructured grids

The space-reconstruction scheme used in this work
is based on the k-exact reconstruction method ap-
plied to linear polynomial (k = 1) [9]. The generic
variable q is assumed to be piecewise linear, i.e. in
the generic i-th cell of the grid

q(~r) = qi + ξi < ~∇q >i ·(~r − ~ri)

where qi is the average value of the variable,
< ~∇q >i is the numerical gradient and ξi the
limiter of the gradient.

Let us describe the evaluation of the numerical gra-
dient. As displayed in Fig. B.2, a control volume
(the stencil domain W ) is defined for each cell, ,
which joins the centers of every adjacent cell. To

N i+1

N i

Cell domain V

n
i+1/2

C

Stencil domain W

Figure B.2: Stencil for the numerical gradient evaluation.
The element on the right is on the border: in this case it is
assumed that q(Ni+1) = q(C).

compute the numerical gradient of a generic vari-
able q, < ~∇q >, the Green-Gauss Theorem is ap-
plied to the stencil domain by considering a trape-
zoidal rule along each face of the element:

∫

W

~∇q dV =

∮

∂W

qn̂ dS ⇒

< ~∇q >=
1

W

∑

stencil

qi + qi+1

2
n̂i+1/2|NiNi+1|

where qi = q(Ni) and |NiNi+1| is the length of the
face NiNi+1.

As already mentioned, the following gradient recon-
struction is linearly exact on both structured and
unstructured meshes. Once the numerical gradient
for the generic variable q is computed, it remains
to evaluate the limiter ξ. Let us consider Fig. B.3.
The evaluation of ξ is subjected to the condition
that the reconstructed variables at each face, i.e.

qleft = qi + ξi ~ri,Fk· < ~∇q >i,

qright = qj + ξj ~rj,Fk· < ~∇q >j

have to satisfy some properties. In 1D, if the “min-
mod” limiter is considered, the following property
is satisfied:

qi ≤ qj ⇒ qleft ≤ qright, (B.1)

which allows the preservation of monotonicity of
the solution of a convex scalar problem. Actually,
in multi-dimensional domains, the same approach
cannot be followed; the reason is obvious in regions
of smooth flow. For example, let us compute a 1D
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right
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iq

q

Figure B.3: Gradient reconstruction.

j

direction of propagation

i

Figure B.4: Computation of a physical 1D phenomenon in
2D mesh.

physical problem in a multi-dimensional domain.
In Fig. B.4 states in the i-th cell and in the j-th cell
are physically the same but numerically different
because of round-off errors. The projection of the
numerical gradient onto the y direction is different
from zero because of round-off errors; thus, even
if the difference between the reconstructed values
on the face between i and j depends only on
round-off errors, the satisfaction of property (B.1))
may create unnecessary restrictions on the limited
gradient in the i-th and j-th cells.

As already mentioned, another important property
of scalar hyperbolic problems is the so-called LED
(Local Extremum Diminishing) property: local ex-
trema are bounded by their initial values. Thus,
the variable reconstruction cannot create new ex-

trema. A limiter satisfying this property is the
Barth-Jespersen limiter (see [8]):

ξi = min
k ∈ faces of i-th cell

ξi,k, (B.2)

where

ξi,k =







































1, |δq| ≤ ǫ(qmax − qmin);

min

{

1,
qmax − qi

δq

}

, δq > ǫ(qmax − qmin);

min

{

1,
qmin − qi

δq

}

, δq ≤ −ǫ(qmax − qmin);

δq =< ~∇q >i ·~ri,Fk,

qmax = max
stencil + i

{qj},

qmin = min
stencil + i

{qj},

with ǫ = 10−6, which prevents the smooth variation
of the variable over a direction from creating an
excessive restriction on the limiter (as in the case
presented in Fig. B.4).

In this manner, at each face, the re-
constructed value satisfies the condition
qleft, qright ∈ [qmin, qmax].

Actually, the final target in the present work is the
computation of flows which involve strong shock
waves; thus, in order to enforce the stability, the
property (B.1) should be at least satisfied on the
faces relative to strong variations of q. Thus, let us
suppose that for the cell i qmax,i = qj and for the
cell j qmin,j = qi. In that case, it can be shown that
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qleft > qright if the limiter is computed as

ξi,k =















































































1, |δq| ≤ ǫ(qmax − qmin);

min

{

1,
|~ri,Fk|

|~ri,Fk| + |~rj,Fk|

qmax − qi

δq

}

,

δq > ǫ(qmax − qmin);

min

{

1,
|~ri,Fk|

|~ri,Fk| + |~rj,Fk|

qmin − qi

δq

}

,

δq < −ǫ(qmax − qmin);

(B.3)

with ǫ = 10−6.
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