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We illustrate how linear algebra calculations can be enhanced by statistical techniques in the case of a
square linear system Ax = b. We study a random transformation of A that enables us to avoid pivoting and
then to reduce the amount of communication. Numerical experiments show that this randomization can
be performed at a very affordable computational price while providing us with a satisfying accuracy when
compared to partial pivoting. This random transformation called Partial Random Butterfly Transformation
(PRBT) is optimized in terms of data storage and flops count. We propose a solver where PRBT and the
LU factorization with no pivoting take advantage of the current hybrid multicore/GPU machines and we
compare its Gflop/s performance with a solver implemented in a current parallel library.
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1. INTRODUCTION

Pivoting is a classical method to ensure stability in linear system solutions. It aims at
preventing divisions by zero or too-small quantities in the process of Gaussian Elimi-
nation (GE). The complete pivoting procedure permutes rows and columns of the input
matrix so that large nonzero matrix elements are moved to the diagonal to be used as
“pivot”. There is no floating-point operation in pivoting but it involves irregular data
movements (O(n3) comparisons for the complete pivoting, where n is the matrix size).
To reduce this overhead, the usual technique is Gaussian Elimination with Partial
Pivoting (GEPP) where at each stage of the elimination, the pivot is searched within
a column and only rows are permuted, reducing the number of comparisons to O(n2).
Note that there also exists an intermediate pivoting strategy called “rook pivoting”
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8:2 M. Baboulin et al.

where the search for a pivot requires a number of comparisons comprised between
O(n2) and O(n3) ([Higham 2002, p. 159]). The stability of GE is strongly related to the
growth factor [Higham 2002, p. 165] that measures how large the entries of the matrix
become in the process of elimination. As in many numerical linear algebra algorithms,
the choice of a pivoting strategy is the result of a trade-off between stability concerns
and Gflop/s performance. In respect with that, a good GE algorithm should minimize
the growth factor (to provide backward stability) and the amount of pivoting (to avoid
penalizing performance). The upper bounds on the growth factor for GEPP might be
much larger than for complete and rook pivoting (see [Higham 2002, p. 169]) and it
can be unstable for some very specific examples [Wright 1993]. However GEPP turns
out to be very stable in practice and has been implemented in standard linear algebra
libraries (e.g., LAPACK [Anderson et al. 1999]).

With the advent of architectures such as multicore processors or Graphics Pro-
cessing Units (GPU), the growing gap between communication and computation
efficiency made the communication overhead due to pivoting more critical. Moreover,
in the LAPACK implementation of GEPP, rows are swapped at once during pivoting,
which inhibits the exploitation of more asynchronicity between block operations.
Several pivoting techniques, potentially less stable than partial or complete pivoting,
can be used to minimize the communication like pairwise pivoting [Sorensen 1984]
or threshold pivoting [Duff et al. 1986] (see Trefethen and Schreiber [1990] for a
stability analysis of these pivoting techniques). In particular pairwise pivoting has
been implemented in algorithms for multicore machines [Buttari et al. 2009] but this
generates a significant overhead since the rows are swapped in pairs of blocks. We
also mention, for multithreaded architectures, a pivoting technique called incremental
pivoting in Quintana-Orti et al. [2009] based on principles used for out-of-core solvers.
Another pivoting technique has been proposed in Grigori et al. [2008] that minimizes
the number of messages exchanged during the factorization, leading to a new class of
algorithms often referred to as “communication-optimal” algorithms. More specifically
for GPUs, the pivoting overhead was reduced by using an innovative data structure
[Volkov and Demmel 2008].

To illustrate the cost of pivoting, we plot in Figure 1 the percentage of time due to
pivoting in LU factorization (MAGMA1 implementation) for several sizes of random
matrices on a current hybrid CPU/GPU machine (in double precision arithmetic). We
observe that pivoting can represent more than 40% of the global factorization time for
small matrices and although the overhead decreases with the size of the matrix, it still
represents 17% for a matrix of size 10,000.

The fact that pivoting remains a bottleneck for linear system solutions is a motiva-
tion to present in this article an alternative to pivoting thanks to randomization.

Statistical techniques have been widely used in linear algebra for instance for solv-
ing linear systems using Monte Carlo methods [Dimov 2008] or computing condition
estimates [Arioli et al. 2007; Kenney et al. 1998]. Statistical properties of Gaussian
elimination have also been studied for the non pivoting case [Yeung and Chan 1997]
and for the partial and complete pivoting case [Trefethen and Schreiber 1990]. In this
article, we describe an approach based on randomization where the original matrix A
is transformed into a matrix that would be sufficiently “random” so that, with a prob-
ability close to 1, pivoting is not needed. This technique has been initially proposed
in Parker [1995] and Parker and Pierce [1995], where the randomization is referred
to as Random Butterf ly Transformation (RBT). It consists of a multiplicative precon-
ditioning UTAV where the matrices U and V are chosen among a particular class of

1Matrix Algebra on GPU and Multicore Architectures, http://icl.cs.utk.edu/magma/.

ACM Transactions on Mathematical Software, Vol. 39, No. 2, Article 8, Publication date: February 2013.



�

�

�

�

�

�

�

�

Accelerating Linear System Solutions Using Randomization Techniques 8:3

Fig. 1. Cost of pivoting in LU factorization (CPU 1 × Quad-Core Intel Core2 Processor Q9300 @ 2.50 GHz
GPU C2050 — 14 Multiprocessors ( × 32 CUDA cores) @ 1.15 GHz).

random matrices called recursive butterfly matrices. Then Gaussian Elimination with
No Pivoting (GENP) is performed on the matrix UTAV and, to solve Ax = b, we instead
solve (UTAV)y = UTb followed by x = Vy.

Considering the need to reduce the cost of pivoting on current parallel architectures,
we revisit in this article the results given in Parker [1995]. We first define a random
transformation referred to as Partial Random Butterfly Transformation (PRBT) which
corresponds to an RBT with a limited number of recursions. It will be shown in numer-
ical experiments on a collection of matrices including pathological cases that a small
number of recursions (only 2 in practice) is sufficient to get accurate results. We also
address the important issue of the condition number of the randomized matrix since
the latter is obtained by a multiplicative preconditioning. We finally propose an imple-
mentation of PRBT that exploits the particular structure of the recursive butterflies
and makes this technique of randomization attractive in terms of Gflop/s and storage.
This includes a packed storage for recursive butterlies, efficient computational kernels
and exploitation of CPU/GPU architectures to render parallelism.

This article is organized as follows. In Section 2.1 we recall the main definitions of
RBT and define PRBT by considering recursive butterfly matrices with possibly less
number of recursions. In Section 2.2 we propose a packed storage for the recursive
butterfly matrices. In Section 2.3 we show that the multiplication by UT and V can be
efficiently computed by taking advantage of the particular structure of the recursive
butterflies and we compute the computational cost of PRBT as a fonction of the number
of recursions. We study in Section 2.4 the effect of PRBT on the condition number of
the randomized matrix. Then we show in Section 3.1 by considering test matrices that
in practice, at most two levels of recursion are required for recursive butterflies to
obtain an accuracy close to that of GEPP. As a result, the cost for the randomization
reduces to ∼ 8n2 operations, which is negligible when compared to the cost of pivoting.
For the sake of stability we also add some iterative refinement steps in the working
precision where the stopping criterion is the componentwise relative backward error.
For the matrices used in our experiments, we never need more than one iteration. In
Section 3.2, we observe that the 2-norm condition number of the initial matrix A is kept
almost unchanged by the PRBT randomization. Finally we present in Section 3.3 an

ACM Transactions on Mathematical Software, Vol. 39, No. 2, Article 8, Publication date: February 2013.
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implementation and first performance results for a PRBT solver on a current hybrid
multicore/GPU machine and we compare the Gflop/s performance of this solver with
the GEPP solver from the parallel library MAGMA. Conclusions and future work are
presented in Section 4.

2. RANDOMIZATION

2.1. Definitions

We define here two types of matrices that will be used in the random transformation.
We follow the definitions given in Parker [1995] in the particular case on real arith-
metic entries.

Definition 2.1. A butterfly matrix is defined as any n-by-n matrix of the form:

B = 1√
2

(
R0 R1
R0 −R1

)

where n ≥ 2 and R0 and R1 are random diagonal and nonsingular n/2-by-n/2 matrices.

Note that a butterfly matrix B can also be expressed as

B = 1√
2

(
In/2 In/2
In/2 −In/2

) (
R0 0
0 R1

)
, (1)

where In/2 denotes the identity matrix of size n/2, that is, B is a product of an orthogo-
nal matrix and a random diagonal matrix. Then the possible orthogonality properties
of B depend on how the random diagonal is obtained.

Definition 2.2. A recursive butterfly matrix of size n and depth d is a product of
the form

W<n,d> =

⎛
⎜⎜⎝

B<n/2d−1>

1 · · · 0
...

. . .
...

0 · · · B<n/2d−1>

2d−1

⎞
⎟⎟⎠ × ... ×

⎛
⎜⎜⎜⎝

B<n/4>

1 0 0 0
0 B<n/4>

2 0 0
0 0 B<n/4>

3 0
0 0 0 B<n/4>

4

⎞
⎟⎟⎟⎠

×
(

B<n/2>

1 0
0 B<n/2>

2

)
× B<n>,

where the B<n/2k−1>

i are butterflies of size n/2k−1, k = 2, . . . , d and B<n> is a butterfly
of size n.

Note that this definition requires that n is a multiple of 2d which can be always
obtained by “augmenting” the matrix A with additional 1’s on the diagonal. Note also
that it differs from the definition of a recursive butterfly given in Parker [1995] where
d = log2n and the first term of W<n,d> is a diagonal matrix of size n (and thus we have
log2n + 1 terms).

ACM Transactions on Mathematical Software, Vol. 39, No. 2, Article 8, Publication date: February 2013.
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For instance, if n = 4 and d = 2, then the recursive butterfly W<4,2> would be
defined by

W<4,2> =
(

B<2>
1 0
0 B<2>

2

)
× B<4>

= 1
2

⎛
⎜⎜⎝

r<2>
1 r<2>

2 0 0
r<2>

1 −r<2>
2 0 0

0 0 r<2>
3 r<2>

4
0 0 r<2>

3 −r<2>
4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

r<4>
1 0 r<4>

3 0
0 r<4>

2 0 r<4>
4

r<4>
1 0 −r<4>

3 0
0 r<4>

2 0 −r<4>
4

⎞
⎟⎟⎠

= 1
2

⎛
⎜⎜⎝

r<2>
1 r<4>

1 r<2>
2 r<4>

2 r<2>
1 r<4>

3 r<2>
2 r<4>

4
r<2>

1 r<4>
1 −r<2>

2 r<4>
2 r<2>

1 r<4>
3 −r<2>

2 r<4>
4

r<2>
3 r<4>

1 r<2>
4 r<4>

2 −r<2>
3 r<4>

3 −r<2>
4 r<4>

4
r<2>

3 r<4>
1 −r<2>

4 r<4>
2 −r<2>

3 r<4>
3 r<2>

4 r<4>
4

⎞
⎟⎟⎠ ,

where the r<j>
i are real random entries.

Our motivation here is to minimize the computational cost of the RBT defined
in Parker [1995] by considering a number of recursions d < log2n resulting in the
transformation defined below.

Definition 2.3. A Partial Random Butterfly Transformation (PRBT) of depth d of a
square matrix A is the product:

Ar = UTAV

where U and V are recursive butterflies of depth d.

Then, the process to solve the general linear system Ax = b is the following.

(1) Compute the randomized matrix Ar = UTAV, with U and V recursive butterflies.

(2) Factorize Ar with GENP.

(3) Solve Ary = UTb.

(4) Solution is x = Vy.

We recall that the GENP algorithm which is performed on Ar is unstable, due to a
possibly large growth factor. We can find in Parker [1995] explanations about how RBT
might modify the growth factor of the original matrix A. To ameliorate this potential
instability, we systematically add in our method iterative refinement in the working
precision as indicated in Higham [2002, p. 232]. Note that, when applied sparse ma-
trices, PRBT has the drawback of filling the original matrix with nonzero elements.

2.2. Packed Storage for Recursive Butterfly Matrices

We describe here how a butterfly matrix and a recursive butterfly matrix can be stored
compactly using respectively a vector and a matrix.

Following Section 2.1, a butterfly matrix has the form

B<n> = 1√
2

(
R0 R1
R0 −R1

)
,

where R0 and R1 are diagonal random matrices. Then B<n> can be stored compactly
in a vector w of size n, where the n/2 first values are the coefficients of R0 and the n/2
last ones are the coefficients of R1.

ACM Transactions on Mathematical Software, Vol. 39, No. 2, Article 8, Publication date: February 2013.
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8:6 M. Baboulin et al.

Let us now consider a recursive butterfly of depth d expressed using butterfly ma-
trices as the product

W<n,d> =

⎛
⎜⎜⎝

B<n/2d−1>

1 · · · 0
...

. . .
...

0 · · · B<n/2d−1>

2d−1

⎞
⎟⎟⎠ × ... ×

(
B<n/2>

1 0
0 B<n/2>

2

)
× B<n>.

We observe that each term of the product can be stored in a vector of size n. Thus
W<n,d> can be stored compactly in a matrix Wp of size n × d where the k-th column

represents the matrice

⎛
⎜⎜⎝

B<n/2k−1>

1 · · · 0
...

. . .
...

0 · · · B<n/2k−1>

2k−1

⎞
⎟⎟⎠ , which means that each vector

Wp((i−1)∗ n
2k−1 +1 : i∗ n

2k−1 , k) stores the butterfly matrix B<n/2k−1>

i . As a result, W<n,d>

can be obtained at once by choosing randomly the corresponding n-by-d matrix Wp.

2.3. Computational Cost of the Randomized Matrix

In the computation of UTAV, where U and V are recursive butterflies, the elementary
operation is a multiplication of a dense matrix A to the left and to the right by a
butterfly matrix.

Let B =
(

R0 R1
R0 −R1

)
and B′ =

(
R′

0 R′
1

R′
0 −R′

1

)
be two butterfly matrices stored in vec-

tors w and w′ using the packed storage defined in Section 2.2. We observe that a mul-
tiplication on both sides of A by B and B′ can be expressed as

BTAB′ = 1
2

(
R0 R0
R1 −R1

)
A

(
R′

0 R′
1

R′
0 −R′

1

)

= 1
2

(
R0 R0
R1 −R1

) (
A11 A12
A21 A22

)(
R′

0 R′
1

R′
0 −R′

1

)

= 1
2

(
R0 0
0 R1

)
C

(
R′

0 0
0 R′

1

)

= 1
2

diag(w) C diag(w′),

where

C =
(

A11 + A12 + A21 + A22 A11 − A12 + A21 − A22
A11 + A12 − A21 − A22 A11 − A12 − A21 + A22

)
. (2)

Then (BTAB′)i,j = wiCi,jw′
j, and the computation of BTAB′ requires 4n2 flops. This ker-

nel corresponds to a PRBT of depth 1 and will be applied for computing the successive
products of the form BTAB′ involved in PRBT. For instance, for d = 2 we have

W<n,2> = BT
(

BT
1 0

0 BT
2

)
A

(
B′

1 0
0 B′

2

)
B′ = BT

(
BT

1 A11B′
1 BT

1 A12B′
2

BT
2 A21B′

1 BT
2 A22B′

2

)
B′, (3)

ACM Transactions on Mathematical Software, Vol. 39, No. 2, Article 8, Publication date: February 2013.
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which involves four elementary products of the form BTAB′ with butterflies of size
n/2 and one with butterflies of size n. This requires 8n2 flops.

More generally, let A be a square matrix of size n and M(n) the computational cost
of a multiplication BTAB′ with B and B′ butterflies of size n, then the number of oper-
ations involved in the computation of Ar by a PRBT of depth d is

c(n, d) =
d∑

k=1

((
2k−1

)2 × M
(
n/2k−1

))
=

d∑
k=1

((
2k−1

)2 × 4
(
n/2k−1

)2
)

=
d∑

k=1

(
4n2

)
= 4dn2.

When using the computational kernels mentioned above, the maximum cost ob-
tained in the case of a full RBT is

c(n, log2n + 1) � 4n2log2n.

Our objective in this article is to consider values of d such that d < log2n 	 n so that
the randomization via recursive butterflies is computationally inexpensive. We will
show in Section 3.1 that in practice two levels of recursion are sufficient to obtain an
accuracy close to that of GEPP resulting in a computational overhead of 8n2 operations
for the randomization.

Similarly to the product of a recursive butterfly by a matrix, the product of a re-
cursive butterfly by a vector does not require the explicit formation of the recursive
butterfly since the computational kernel will be a product of a butterfly by a vector,
which involves O(n) operations. As a result, the computation of UTb and Vy (steps (3)
and (4) of the solution process given after Definition 2.3) can be performed in O(dn)
flops and will be neglected in the remainder of this article, for small values of d.

2.4. Condition Number of the Randomized Matrix

A major concern in the multiplicative preconditioning involved in PRBT is to keep the
condition number as “unchanged” as possible. Let us denote by cond2(A) the 2-norm
condition number of a square matrix A and defined by cond2(A) = ∥∥A

∥∥
2

∥∥A−1
∥∥

2. Then,
with the notations of Section 2.1, we have

cond2(Ar) ≤ cond2(U) cond2(A) cond2(V) .

Ideally, a recursive butterfly matrix will have a condition number close to 1 so that
the condition number of Ar will be close to that of A. In general random matrices tend
to be well conditioned [Edelman 1988] but let us study here the particular case of the
recursive butterfly matrices.

For an elementary butterfly matrix B of size n, we have

BTB = 1√
2

(
R0 R0
R1 −R1

)
.

1√
2

(
R0 R1
R0 −R1

)

=
(

R2
0 0

0 R2
1

)

= diag(r1, . . . , rn)2,

where the ri are random entries and then we obtain (using, e.g., Saad [2000, p. 231])

cond2(B) =
√

cond2(BTB) = max |ri|
min |ri|

. (4)

It comes from Equation (4) that the random variables ri should not be too small to
avoid having a large condition number for B.

ACM Transactions on Mathematical Software, Vol. 39, No. 2, Article 8, Publication date: February 2013.
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More generally, a recursive butterfly of depth d is a product of block-diagonal matri-
ces having the form B = diag(B1, . . . , Bp) where 1 ≤ p ≤ 2d−1 and the Bi are butterfly
matrices of size n/p. Therefore we have

BTB =

⎛
⎜⎝

BT
1 B1 · · · 0
...

. . .
...

0 · · · BT
p Bp

⎞
⎟⎠ ,

and BTB is a diagonal matrix. Then cond2(B) can be expressed as max |ri|
min |ri| where the ri

are random numbers that form the diagonal of BTB.
If the ri are such that |ri| ∈[ α, β] (α > 0), then we have cond2(B) ≤ β

α
and thus, for U

being a recursive butterfly of depth d, we get

cond2(U) ≤
(

β

α

)d

. (5)

This result will motivate the type of random values used in forming the recursive
butterflies. In particular, since the bound on the condition number grows with the
number of recursions, β

α
should be close to 1. Parker [1995] generates the random di-

agonal values used in the butterflies as exp( r
10 ), where r is randomly chosen in

[
−1

2 , 1
2

]
and justifies this choice by the fact that the determinant of a butterfly has an expected
value 1. It satisfies also our requirement because β

α
= e0.1 ≈ 1.1052. Experiments

will be performed in Section 3.2 to confirm the good behaviour of this randomization
process in terms of conditioning.

3. NUMERICAL EXPERIMENTS

3.1. Accuracy of PRBT

In this section, we compare the accuracy of the linear system solution obtained using
GEPP (as it is implemented in LAPACK) and PRBT followed by GENP (in the remain-
der, this solver will be simply denoted as PRBT). We also compare with GENP and QR.
We recall here that the Householder QR factorization is always a good option for solv-
ing square linear systems because of its backward stability property [Higham 2002,
p. 361] and due to the fact that we do not have to worry about large growth factors
(however the computational cost is about twice that of LU).

Experiments were carried out using Matlab version 7.12 (R2011a) on a machine with
a precision of 2.22 · 10−16. In Table I, we consider 19 test matrices of size 1024 where
the first 11 matrices come from the Matlab gallery and Higham’s Matrix Computa-
tion Toolbox [Higham 2002], the 12-th matrix comes from Foster [1994], the test cases
number 13 to 16 come from [Trefethen and Schreiber 1990] and the last 3 matrices are
defined in Parker [1995]. Similarly to Parker [1995], the random diagonal matrices
used to generate the butterfly matrices described in Definition 2.1 have diagonal val-
ues exp

( r
10

)
where r is chosen from the uniform distribution in

[
−1

2 , 1
2

]
(using the mat-

lab instruction rand). For all test matrices, we consider the exact solution x =[ 1 1 . . . 1]
and the right-hand side is set as b = Ax.

We report in Table I the 2-norm condition number of the original matrix (Matlab
function cond) and the componentwise backward error resulting from the four solvers

ACM Transactions on Mathematical Software, Vol. 39, No. 2, Article 8, Publication date: February 2013.
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Table I. Comparison of Linear System Solution Using PRBT with Other Solvers on a Collection of Matrices

Matrix Cond GENP GEPP QR PRBT REC IR

augment 4 · 104 1.28 · 10−14 2.28 · 10−15 2.99 · 10−16 2.81 · 10−16 1 1

gfpp 5 · 102 9.01 · 10−01 6.88 · 10−01 1.06 · 10−16 1.27 · 10−16 1 1

chebspec 2 · 1014 1.19 · 10−15 3.29 · 10−16 5.22 · 10−15 3.23 · 10−14 1 0

circul 1 · 103 1.74 · 10−13 1.66 · 10−15 2.66 · 10−15 2.66 · 10−15 1 0

condex 1 · 102 7.32 · 10−15 5.98 · 10−15 8.34 · 10−15 6.50 · 10−15 1 0

fiedler 7 · 105 Fail 2.11 · 10−15 1.54 · 10−14 7.90 · 10−15 1 0

Hadamard 1 · 100 0 · 100 0 · 100 7.58 · 10−16 8.33 · 10−15 1 0

normaldata 3 · 104 2.03 · 10−12 6.30 · 10−15 2.38 · 10−16 3.30 · 10−16 1 1

orthog 1 · 100 5.64 · 10−01 4.33 · 10−15 3.70 · 10−16 4.31 · 10−16 2 1

randcorr 3 · 103 5.12 · 10−16 4.04 · 10−16 5.73 · 10−16 5.92 · 10−16 1 0

toeppd 7 · 105 2.53 · 10−13 2.60 · 10−15 8.39 · 10−15 5.71 · 10−15 1 0

Foster 5 · 102 1 · 100 1 · 100 1.90 · 10−16 3.30 · 10−16 2 1

[ −1, 1] 2 · 103 2.19 · 10−11 5.19 · 10−15 2.33 · 10−16 2.35 · 10−16 1 1

[ 0, 1] 4 · 104 1.97 · 10−12 2.85 · 10−15 2.15 · 10−15 1.79 · 10−15 1 1

{−1, 1} 4 · 103 Fail 3.96 · 10−15 2.38 · 10−16 2.70 · 10−16 2 1

{0, 1} 5 · 104 Fail 4.39 · 10−15 2.19 · 10−15 1.09 · 10−15 2 1

Turing 5 · 1019 0 · 100 0 · 100 7.16 · 10−13 1.05 · 10−14 2 1

|i − j| 7 · 105 Fail 3.33 · 10−16 1.54 · 10−14 6.05 · 10−15 1 0

max(i, j) 3 · 106 2.16 · 10−14 1.21 · 10−15 1.46 · 10−14 2.27 · 10−15 1 1

considered in this study. This error is defined in Oettli and Prager [1964] and
expressed by

ω = max
i

|Ax̂ − b|i
(|A| · |x̂| + |b|)i

,

where x̂ is the computed solution. We also report the number of recursion steps
(REC) used in the PRBT algorithm for the recursive butterflies (parameter d in
Definition 2.3). For better stability, we add systematically iterative refinement (in
the working precision) when we use PRBT. Similarly to Arioli et al. [1989] and Skeel
[1980], the iterative refinement algorithm is activated while ω > (n + 1)u, where u
is the machine precision. The number of iterations (IR) in the iterative refinement
process is also listed in Table I.

We observe that we never need more than two recursions, which involves for PRBT
an extra computational cost lower or equal to 8n2 operations. The two matrices gfpp
[Higham and Higham 1989] and Foster [Foster 1994] are well-known pathological ma-
trices that maximize the growth factor. For these matrices, PRBT destroys the original
structure and gives very accurate results (for these two matrices, one step of iterative
refinement was also required for QR to get the best accuracy). GENP fails for 4 matri-
ces (fiedler, {−1, 1}, {0, 1}, |i − j|) and for each of them, PRBT is as accurate as GEPP.
For the matrices fielder, |i − j| and max(i, j), PRBT gives results that are slightly
better than QR.

For 4 matrices (chebspec, condex, randcorr, Turing), using PRBT is not useful be-
cause GENP gives a good solution. However this shows that these matrices are not de-
generated by the randomization applied to them. On some matrices (circul, augment,
normaldata, [ −1, 1], [ 0, 1]), the accuracy of GENP can be improved just by adding
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Fig. 2. Average 2-norm condition number for recursive butterfly matrices (samples of 500 matrices) for a
fixed matrix size n = 1024.

iterative refinement and PRBT is not useful. Iterative refinement turns out to be nec-
essary in some cases when using PRBT but with never more than one iteration. Note
that when matrices are orthogonal (orthog or proportional to an orthogonal matrix
(Hadamard)), Gaussian elimination has not to be used. These 2 examples have been used
only for purpose of testing. In the case of integer-valued matrices (max(i, j), Hadamard),
PRBT destroys the integer structure and transform the matrix into a real-valued one.

We also point out that, when Ar is computed with orthogonal matrices obtained
by considering R0 = R1 = In/2 in Formula (1), instead of random butterflies, then
GENP fails (division by zero) for matrices {−1, 1}, {0, 1}, and we obtain a backward
error close to 1 for Foster and Turing. This illustrates the interest of randomizing to
avoid pivoting as expressed in Parker [1995, Theorem 4].

Finally, in all test cases considered in these experiments, PRBT provides us with a
satisfying accuracy while requiring an extra computational cost of O(n2) operations
(coming from one or two recursions and possibly one step of iterative refinement).

3.2. Tests on Condition Numbers

In the previous experiments we also computed, for all test matrices, the condition
number of the randomized matrix. As expected from the comments in Section 2.4,
cond2(Ar) is of same order of magnitude as cond2(A) and therefore is not listed in
Table I.

Let us now study in more details the condition number of the recursive butterflies
resulting from the random distribution chosen in our experiments. We represent in
Figure 2 the 2-norm condition number (computed using the Matlab function cond) of
the recursive butterflies used in the experiments described in Section 3.1. We plot,
for each recursion depth, the average condition number obtained for a sample of
500 recursive butterflies of size 1024 and the upper bound on this condition number
as expressed in Equation (5). We observe that for small numbers of recursions, the
average condition number is very close to its bound (e.g., for d = 2, cond2(U) = 1.2026

and
(

β
α

)d = 1.2214) and that for larger numbers of recursions, the difference be-

tween these quantities becomes larger (e.g., for d = 10, cond2(U) = 1.5183 and(
β
α

)d = 2.7183) and then the upper bound becomes more pessimistic. This is not
surprising since for small values of d the difference comes mainly from the statistics
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and for large values, the difference comes also from the nature of the upper bound
which is a product of d bounds as explained in Section 2.4. However, as shown in
Section 3.1, two recursions are in general enough to get a satisfying accuracy and in
that case recursive butterflies are very well conditioned.

3.3. Implementation Details and Preliminary Performance Results

Let us first describe how the randomization via PRBT is implemented. A copy of the
original matrix A is made on the GPU and this copy will be updated by the GPU
during the randomization process. The computation of the elementary product BTAB′

expressed in Formula (2) is performed by using n2

4 independent threads on the GPU
corresponding to a couple (i, j) with i, j ≤ n

2 . Each thread reads and updates 4 values
of the original matrix: A(i, j), A

(
i + n

2 , j
)
, A

(
i, j + n

2

)
and A

(
i + n

2 , j + n
2

)
. This leads to

read and write the matrix only once. Few computations are required to update the
values and the main bottleneck comes from the read/write operations in the device
memory. As seen in Section 3.1, 2 recursions are sufficient to get accurate results, so
we implemented a PRBT of depth 2. Formula (3) shows that a PRBT of depth 2 involves
5 elementary products of the form BTAB′ (1 product for recursion #1 and 4 products for
recursion #2). These 5 products can be computed with only one reading and writing of
the matrix A in the device memory. However, due to the too-large number of variables
and to the small size of cache memory, an implementation with 2 successive reading
and writing of the matrix A (one for each recursion) gives better performance results.

The PRBT solver for hybrid CPU/GPU architectures performs the following tasks.

— We generate the random matrices U and V in packed storage on the CPU.
— The matrix A and the packed representation of U and V are sent from the host

memory to the device memory.
— Randomization is performed on the GPU, updating A in the device memory.
— The randomized matrix is factorized with GENP on the GPU, the panel factoriza-

tion being performed on the CPU host. This routine has been developed for the
PRBT solver. Note that, since we know in advance that we are not going to pivot,
GENP is implemented as a very efficient fully BLAS 3 algorithm.

— We compute UTb on the GPU, Ary = UTb is solved on the GPU, followed by the
solution x = Vy.

— The solution is sent to the host memory, followed if necessary by iterative
refinement.

The GPU is a Fermi Tesla S2050 (1.15 GHz, 2687.4 MB memory) and its multicore
host is a 48 cores system (4 sockets x 12 cores) AMD Opteron 6172 (2.1 GHz). On the
multicore we use LAPACK and BLAS from MKL 10.2. The PRBT solver is compared
with a GEPP solver as it is implemented in the MAGMA 1.0 library. In both cases the
multicore host is involved just in the panel factorization, the update of the trailing ma-
trix being performed on the GPU. Figure 3 shows the performance in Gflop/s for both
solvers using double precision arithmetic and we observe that PRBT achieves much
better performance depending on the size of the matrix. For small problems the gain is
much bigger (from 100% for size 1,000 to 33% for size 3,000). In the range 4,000–8,000,
the gain obtained by using PRBT is about 20% and for matrix sizes larger than 9,000,
the improvement is around 10% showing that asymptotically, the two performances
should be close. We point out that these results are obtained using a GEPP imple-
mentation specifically tuned for this architecture while PRBT could be still improved
by additional tuning and use of a scheduler (e.g., QUARK [YarKhan et al. 2011]).
Improvement could also be obtained by taking advantage of the multicore in the
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Fig. 3. Performance for PRBT and GEPP in double precision arithmetic (4 × 12-Core AMD Opteron 6172
@ 2.1 GHz - GPU Fermi Tesla S2050 @ 1.15 GHz).

update of the trailing matrix. In this respect, the performance results of PRBT are
very promising.

4. CONCLUSION AND FUTURE WORK

We proposed a linear system solver where the LU factorization is performed without
pivoting on a matrix randomized by PRBT. We showed that PRBT does not alter the
2-norm condition number of the original matrix and that it requires in practice a low
computational cost (O(n2) operations) and a few additional data storage. We demon-
strated that the obtained accuracy is similar to that of GEPP on a reasonable range of
matrices. We also gave first performance results on a current hybrid CPU/GPU archi-
tecture where the preprocessing due to randomization is performed on the GPU and
the LU factorization without pivoting is a hybrid CPU/GPU program. The resulting
PRBT solver outperforms the GEPP solver as it is implemented in the MAGMA li-
brary. The PRBT method shall be integrated into the MAGMA library jointly with a
fully BLAS 3 GENP solver. The latter could be indeed very useful to factorize efficiently
matrices for which the growth factor is O(1) and therefore pivoting is not needed (see
examples of such classes of matrices in Higham [2002, p. 166]). Further experiments
will be performed on multicore architectures which will allow performance compar-
isons with other solvers (e.g., from the PLASMA2 library). which are not necessarily
based on GEPP and enable more extensive testing.
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