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Abstract

We study the complexity of traversing tree-shaped workflows whose tasks require large I/O
files. We target a heterogeneous architecture with two resource types, each with a different
memory, such as a multicore node equipped with a dedicated accelerator (FPGA or GPU).
The tasks in the workflow are colored according to their type and can be processed if all
there input and output files can be stored in the corresponding memory. The amount of
used memory of each type at a given execution step strongly depends upon the ordering
in which the tasks are executed, and upon when communications between both memories
are scheduled. The objective is to determine an efficient traversal that minimizes the
maximum amount of memory of each type needed to traverse the whole tree. In this
paper, we establish the complexity of this two-memory scheduling problem, and provide
inapproximability results. In addition, we design several heuristics, based on both post-
order and general traversals, and we evaluate them on a comprehensive set of tree graphs,
including random trees as well as assembly trees arising in the context of sparse matrix
factorizations.

1. Introduction

Modern computing platforms are heterogeneous: a typical node is composed of a multi-
core processor equipped with a dedicated accelerator, such as a FPGA or a GPU. Our goal
is to study the execution of a computational workflow, described by an out-tree, onto such
a heterogeneous platform, with the objective of minimizing the amount of memory of each
resource needed for its processing. The nodes of the workflow tree correspond to tasks,
and the edges correspond to the dependencies among the tasks. The dependencies are in
the form of input and output files: each node accepts a (potentially large) file as input,
and produces a set of files, each of them to be processed by a different child node. We
consider in this paper that we have two different processing units at our disposal, such as
a CPU and a GPU. For sake of generality, we designate them by a color (namely blue and
red). Each task in the workflow is best suited to a given resource type (say a core or a
GPU), and is colored accordingly. To execute a task of a given color, the input file and
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all the output files of the task must fit within the corresponding memory. As the workflow
tree is traversed, tasks of different colors are processed, and capacity constraints on both
memory types must be met. In addition, when a child of a task has a different color than
its parent, say for example that a blue task has a red child, a communication from the blue
memory to the red memory must be scheduled before the red child can be processed (and
again, the input file and all output files of this red child must fit within the red memory).
All these constraints require to carefully orchestrate the scheduling of the tasks, as well
as the communications between memories, in order to minimize the maximum amount of
each memory that is needed throughout the tree traversal.

Memory-aware scheduling is an important problem that has been the focus of many
papers (see Section 2 for related work). This work mainly builds upon the pioneering work
of Liu, who has studied tree traversals that minimize the peak amount of memory used on
a homogeneous system, hence with a single memory type. Liu first restricted to depth-first
traversals in [17], before dealing with an optimal algorithm for arbitrary traversals in [17].
In many situations, the optimal traversal is a depth-first traversal, but this is not always
the case. An assessment of the relative performance of depth-first traversals versus optimal
traversals is proposed by [14]. The main objective of this paper is to extend these results
to colored trees with two memory types, and tasks belonging to a given type. Clearly, the
traversal, i.e., the order chosen to execute the tasks, and to perform the communications,
plays a key role in determining which amount of each memory is needed for a successful
execution of the whole tree. The interplay between both memories dramatically complicates
the scheduling: it is no surprise that the complexity of the problem, that was polynomial
with a unique memory, now becomes NP-complete.

In this paper, we concentrate on memory usage, but we are fully aware that perfor-
mance aspects are important too, and that even more difficult trade-offs are to be found
between parallel performance and memory consumption. One could envision a fully general
framework, where tasks have different execution-times for each resource type (instead of
being tied to a given resource as in this paper), and where concurrent execution of several
tasks on each resource type is possible (instead of the fully sequential processing of the task
graph that is assumed in this paper). Altogether, this study is only a first step towards the
design of memory-aware schedules on modern heterogeneous platforms with two memory
types. However, despite the apparent simplicity of the model, our results show that we
already face a difficult bi-criteria optimization problem when dealing with two different
memory types. We firmly believe that the results presented in this paper will help to lay
the foundations for memory-aware scheduling algorithms on modern heterogeneous plat-
forms such as those equipped with multicores and GPUs. Indeed, one key contribution
of the paper is the derivation of several complexity results: NP-completeness of the prob-
lem, and inapproximability within a constant (α, β) factor pair of both absolute minimum
memory amounts. Here the absolute minimum memory of a given type is computed when
assuming an infinite amount of memory of the other type.

Another major contribution is the study of depth-first traversals and related variants.
We show how to extend Liu’s algorithm to compute the best depth-first traversal, which
simultaneously minimizes both memory usages. However, while depth-first traversals were
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natural algorithms with a single memory, they severely constrain the activation of com-
munication nodes with two memories. We show that the optimization problem is still
NP-complete when relaxing the firing of communication nodes in depth-first traversal,
which leads us to go beyond depth-first traversals and to introduce general heuristics.
These heuristics extends Liu’s optimal algorithm along various (greedy) decision criteria
to trade-off the usage of both memory types.

Finally, the third major contribution is a comprehensive assessment of all these heuris-
tics using both randomly generated trees, and actual elimination trees that arise from the
multifrontal factorization of sparse linear systems.

The rest of the paper is organized as follows: We start with an overview of related
work in Section 2. Then we detail the framework in Section 3. The next four sections
constitute the heart of the paper. We deal with complexity results in Section 4. Section 5
is devoted to the study of depth-first traversals, a first class of (widely-used) heuristics.
Then we introduce additional heuristics in Section 6. The experimental evaluation of all
the heuristics is conducted in Section 7. Finally we provide some concluding remarks and
hints for future work in Section 8.

2. Related Work

The work presented in this paper builds upon previous results related to memory-aware
scheduling, but its applications are relevant to the field of sparse matrix factorization and
of hybrid computing. In this section, we present related work for each domain.

2.1. Sparse matrix factorization

Determining a memory-efficient tree traversal is very important in sparse numerical
linear algebra. The elimination tree is a graph theoretical model that represents the storage
requirements, and computational dependencies and requirements, in the Cholesky and LU
factorization of sparse matrices. In a previous study, we have described how such trees
are built, and how the multifrontal method organizes the computations along the tree [14].
This is the context of the founding studies of Liu [17, 18] on memory minimization for
postorder or general tree traversals mentioned in Section 1. Memory minimization is still
a concern in modern multifrontal solvers when dealing with large matrices. In particular,
efforts have been made to design dynamic schedulers that takes into account dynamic
pivoting (which impacts the weights of edges and nodes) when scheduling elimination trees
with strong memory constraints [11], or to consider both task and tree parallelism with
memory constraints [1]. Recently, still in the context of a single memory type, an extension
of these results to parallel machines has been proposed in [? ]. While these studies try to
optimize memory management in existing parallel solvers, we aim at designing a simple
model to study the fundamental underlying scheduling problem.

2.2. Scientific workflows

The problem of scheduling a task graph under memory constraints also appears in the
processing of scientific workflows whose tasks require large I/O files. Such workflows arise in

3



many scientific fields, such as image processing, genomics or geophysical simulations. The
problem of task graphs handling large data has been identified in [21] which proposes some
simple heuristic solutions. Surprisingly, in the context of quantum chemistry computations,
Lam et al. [16] have recently rediscovered the algorithm published in 1987 in [18].

2.3. Pebble game and its variants

On the more theoretical side, this work builds upon the many papers that have ad-
dressed the pebble game and its variants. Scheduling a graph on one processor with the
minimal amount of memory amounts to revisiting the I/O pebble game with pebbles of
arbitrary sizes that must be loaded into main memory before firing (executing) the task.
The pioneering work of Sethi and Ullman [23] deals with a variant of the pebble game
that translates into the simplest instance of the problem with a unique memory and where
all files have weight 1. The concern in [23] was to minimize the number of registers that
are needed to compute an arithmetic expression. The problem of determining whether a
general DAG can be traversed with a given number of pebbles has been shown NP-hard
by Sethi [22] if no vertex is pebbled more than once (the general problem allowing recom-
putation, that is, re-pebbling a vertex which have been pebbled before, has been proven
Pspace complete [9]). However, this problem has a polynomial complexity for tree-shaped
graphs [23]. Recently, still in the contact of a single memory type, an extension of these
results to parallel machines base been proposed in [19].

2.4. Hybrid computing

Hybrid computing consists in the simultaneous use of CPUs and GPUs to optimize
performance for high performance computing. Since CPUs and GPUs are powerful for
specific and different tasks, its is natural to schedule a task on its “favorite” resource, that
is, the resource where its execution time is minimal. This has been done successfully to
increase performance in linear algebra libraries [24, 13]. There also exist software tools
that schedule an application composed of tasks with both CPU and GPU implementations
on hybrid platforms: many frameworks have recently been proposed for such hybrid task
scheduling, such as StarPU [4], DAGuE and PaRSEC [6, 5] or StarSs [20]. However, these
schedulers are dynamic, i.e., they make their decisions at runtime, based for example on the
expected duration of the tasks on the different kind of processing units (CPUs, GPUs,...),
and are mostly interested in execution time, and not memory footprint. On the contrary,
in this paper, we study the offline problem of scheduling a tree of task to reduce memory
on a hybrid system. Our study can be seen as a first theoretical step to take memory
constraints into account in such dynamic hybrid schedulers.

3. Framework

As stated above, we deal with tree traversals on a two-memory system where each task
belongs to a specific memory. Dependencies are in the form of input and output files: each
task accepts a file as input from its parent node in the tree, and produces a set of files to be
consumed by each child node. We start this section by formally writing all the constraints
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that need to be satisfied during a traversal: for the convenience of the reader, we briefly
review the constraints for uncolored trees (single memory) in Section 3.1, before dealing
with those for bi-colored trees (two memories) in Section 3.2. Also, we work out a small
example in Section 3.3. Finally, we state the target optimization problems in Section 3.4.

3.1. Uncolored trees

The tree work-flow T is composed of n nodes, or tasks, numbered from 1 to n where
Children(i) denotes the set of the children of i. We consider here out-trees, where a
parent node has to be processed before its children. Each task (or node) i in the tree is
characterized by the size fi of its input file (data needed before the execution and received
from its parent), and by the size ni of its execution file. A valid traversal σ of the tree T
is an ordered list of the nodes of T such that all precedence constraints in T are enforced
by the schedule. Since the nodes of T are numbered from 1 to n, σ can be seen as a
permutation of J1, nK, where ∀i ∈ J1, nK and ∀j ∈ Children(i), σ(i) < σ(j).

• Each node i in the tree has an input file of size fi. If i is not the root, its input file
is produced by its parent parent(i); if i is the root, its input file may be of size zero,
or it may contain input from the outside world.

• Each node i in the tree has an execution file of size ni. This execution file can be
modeled by adding an extra child to the node, as depicted in Figure 1. Thus, from
now on, we will assume w.l.o.g. that every node i has an execution file of size ni = 0.

• Each non-leaf node i in the tree, when executed, produces a file of size fj for each
j ∈ Children(i). If i is a leaf-node, then Children(i) = ∅ and i produces a file of
null size (we consider that terminal data produced by leaves are directly sent to the
outside world).

During the processing of a task i, the memory must contain its input file, and all its
output files (including the execution file of the additional child whenever needed). The
amount of memory MemReq(i) that is needed for this processing is thus:

MemReq(i) =

 ∑
j∈Children(i)

fj

 + fi

After task i has been processed, the input file is discarded, while its output files are kept
in memory until the processing of its children. Thus, for a traversal σ of T , the actual
amount of memory used to process the node i is:

MemUsed(σ, i) =

 ∑
j∈Children(i)

fj

 + fi +
∑

j∈S\{i}

fj
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Figure 1: Modeling a node with an execution file of size ni 6= 0

where S denotes the set of files stored in the memory when the scheduler decides to execute
task i. Note that S must contain the input file of task i. After the processing of node i,
we have:

S ← (S\{i}) ∪ Children(i)

Initially, S contains the input file of the root.

3.2. Bi-colored trees

When two memories are considered, each task (or node) i in the tree is now characterized
by its color, which represents the specific memory where the task has to be executed, in
addition to the size fi of its input file (as before). We let color(i) ∈ {red, blue} represent
the memory type of task i. If color(i) = red, then i is a computational node which operates
in the red memory, which it uses to load its input file, execute its program and produce the
set of output files for its children. Similarly, if color(i) = blue, then i is a computational
node which operates in the blue memory. Each communication from one memory to the
other is achieved through a communication node, which is uncolored. Hence, there are
three types of nodes in the tree, red or blue computational nodes (or tasks), and uncolored
communication nodes. Each time there is a data dependence between two tasks assigned
to different memories, the output file of the source task has to be loaded from one memory
into the other, using a communication node. Thus, in the model, the tree T does not
contain direct edges between blue and red nodes; memory loads from one memory to the
other occur only when processing a communication node. A valid traversal σ of the tree
T is an ordered list of the nodes of T (including communication nodes) such that all node
dependences in T are enforced by the schedule. Here are further details on the processing
of each node type:
• Computational nodes: they represent a task executed on a specific memory. During

the processing of a computational task i, the associated memory must contain the
input file and its output files. Assuming that i is a blue task, the amounts of memory
BlueMemReq(i) and RedMemReq(i) that are needed for this processing are thus:

BlueMemReq(i) =

 ∑
j∈Children(i)

fj

 + fi, RedMemReq(i) = 0
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After task i has been processed, the input file is discarded, while its output files are
kept in memory until the processing of its children. Thus, for a traversal σ of T , the
actual amounts of memory used to process the blue node i are:

BlueMemUsed(σ, i) =

 ∑
j∈Children(i)

fj

 + fi +
∑

j∈Sblue\{i}

fj,

RedMemUsed(σ, i) =
∑
j∈Sred

fj

where Sblue (respectively Sred) denotes the set of files stored in the blue (respectively
red) memory when the scheduler decides to execute task i. Note that Sblue must
contain the input file of task i. After processing the blue node i, we have:

Sblue ← (Sblue\{i}) ∪ Children(i), Sred ← Sred

Initially, Sblue contains the input file of the root and Sred = ∅ if the root is a blue
node, and conversely if the root is a red node.
• Communication nodes represent communications between one memory and the other.

Each communication node i has an input file of size fi and an output file of the same
size. It loads fi units of memory from one memory to the other. During the processing
of a communication task i from the blue memory to the red memory, both memories
must contain the file of size fi. Thus, the amount of blue and red memory needed for
this processing is fi:

BlueMemReq(i) = fi, RedMemReq(i) = fi

After i has been processed, the input file from the blue memory is discarded, while
the output file is kept in the red memory until the processing of its child. Thus, for a
traversal σ of T , the actual amounts of memory used to process the communication
node i are:

BlueMemUsed(σ, i) = fi +
∑

j∈Sblue\{i}

fj, RedMemUsed(σ, i) = fi +
∑
j∈Sred

fj

Note that Sblue must contain the input file of task i. Letting j denote the unique
child of communication node i, we have after the execution of i that:

Sblue ← Sblue\{i}, Sred ← Sred ∪ {j}

It is important to stress that a communication node need not be processed right after
the execution of its parent. The only constraint is that its processing must precede the
execution of its unique child. This flexibility in the schedule severely complicates the search
for efficient traversals.
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Figure 2: Bi-colored tree T for the example.

3.3. Example

Let consider the bi-colored tree T depicted in Figure 2. Any traversal of T has to start
with the execution of the root B1. After it has been processed, 4 units of the blue memory
are occupied and the red memory is empty. We now have two choices:

• Either we process the right blue childrenB2 first. This would use BlueMemUsed(σ,B2) =
8 units of the blue memory since the file of size 1 created by the root would still reside
in the blue memory. Then, the sum of the file sizes stored in the blue memory after
B2 has been processed would be equal to

∑
j∈Sblue

fj = 5, and the red memory would
be empty.

• Or we can process the communication node C1 to load the file of size 1 from the blue
memory to the red one. After that, if the left blue children B2 is now processed, its
execution would use BlueMemUsed(σ,B2) = 7 units of the blue memory instead of
8 in the previous case, but the red memory would contain a file of size 1 wich will
matter for a further execution of a red node.

A complete traversal σex of T is described in Table 1, with the ordered list of the
execution of tall nodes in T , the amount of both memories required for each task, and
the evolution of both memory usages after each execution. The maximum memory usage
for the traversal σex described in Table 1 is 7 units for the blue memory and 8 units for
the red memory. As one can see, the ordered list of the execution of the computation
and communication nodes of T will be the result of a trade-off between the usage of each
memory. In fact, the memory-aware traversal problem for bi-colored rooted trees can
naturally be cast into a two-criteria optimization problem.
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σex(i) Fired Node BlueMemReq(i) RedMemReq(i) BlueMemUsed(σ, i) RedMemUsed(σ, i)
∑
j∈Sblue

fj
∑
j∈Sred

fj

1 B1 4 0 4 0 0 → 4 0
2 C1 1 1 4 1 4 → 3 0 → 1
3 B2 7 0 7 1 3 → 4 1
4 B3 2 0 4 1 4 → 2 1
5 B4 1 0 2 1 2 → 1 1
6 B5 4 0 4 1 1 → 3 1
7 C3 3 3 3 4 3 → 0 1 → 4
8 R5 0 3 0 4 0 4 → 1
9 R1 0 5 0 5 0 1 → 4
10 C2 2 2 2 4 0 → 2 4 → 2
11 B6 5 0 5 2 2 → 3 2
12 B7 1 0 3 2 3 → 2 2
13 B8 2 0 2 2 2 → 0 2
14 R2 0 8 0 8 0 2 → 6
15 R3 0 4 0 6 0 6 → 2
16 R4 0 2 0 2 0 2 → 0

Table 1: Description of the traversal σex in Section 3.3.

3.4. Objectives

As stated above, we face a multi-criteria optimization problem: how to minimize the
amount of both memories needed for the tree traversal? The peak memory is the maximum
usage of each memory over the whole schedule σ of the tree T , and is defined for the blue
and the red memory by:

Mσ
blue(T ) = max

i
BlueMemUsed(σ, i), Mσ

red(T ) = max
i

RedMemUsed(σ, i)

Thus, we define the optimal peak for each memory needed to process a tree T as:

Mopt
blue(T ) = min

σ
Mσ

blue(T ), Mopt
red (T ) = min

σ
Mσ

red(T )

We point out that Mopt
blue(T ) can be seen as the minimum amount of blue memory re-

quired to traverse the tree when there is an unbounded amount of red memory available: a
schedule which reaches Mσ

blue(T ) = Mopt
blue(T ) can use an arbitrary amount of red memory.

Intuitively, one may ask what are trade-offs between the blue and red memory requirements
of feasible schedules. One major objective of this paper is to provide quantitative answers
to this question.

Top-down vs. bottom-up traversals.. We conclude this section with two remarks on the
model. First, we can handle the case where a node in the tree needs an execution file (in
addition to input and output files) by adding an extra child to the node, whose input file
has the size of the execution file. Second, there is a complete equivalence with top-down
traversals of out-trees (the problem addressed in this paper) and bottom-up traversals of
in-trees (as used in sparse matrices factorization). In a nutshell, one only needs to reverse
the direction of the edges, and to execute the schedule backwards, to move from one variant

9



to another1. In fact, the literature deals with both variants. The seminal paper of Liu [17]
originally deals with post-order bottom-up traversals for in-trees, while we speak of depth-
first top-down traversals for out-trees in this paper, but there is no actual difference.

4. Complexity results

This section presents several important complexity results. We start with the NP-
completeness of the two-memory minimization problem in Section 4.1. Next we show in
Section 4.2 that the problem reduces to traversing uncolored trees when one memory is
unbounded. Finally, we prove in Section 4.3 that it is impossible to approximate both
minimum memories within arbitrary constant factors.

4.1. Hardness of the problem

Our first result assesses the complexity of the problem, as formulated in the following
definition.

Definition 1 (TwoMemoryTraversal). Given a tree T with n nodes, and two fixed
memory amounts Mred and Mblue, does there exist a traversal σ of the tree such that
Mσ

blue(T ) ≤Mblue and Mσ
red(T ) ≤Mred?

Theorem 1. The TwoMemoryTraversal problem is NP-complete.

Proof. The problem clearly belongs to NP, and the certificate is the ordered list of tasks
(of both colors and including uncolored communication nodes) executed by the schedule;
it is easy to maintain the amount of each memory required by the schedule, and to check
that neither Mred nor Mblue is exceeded.

To establish the completeness, we use a reduction from the 2-Partition problem [8].
Consider an instance Inst1 of the 2-Partition problem, with n integers {a1, a2, ..., an ‖∑n

i=1 ai = S}. Consider an instance Inst2 of the TwoMemoryTraversal, consisting
in the tree depicted on Figure 3. We set the bounds Mred = 3S for the red memory and
Mblue = 2S for the blue memory. The construction of Inst2 is polynomial in the size of
Inst1.

Assume first that Inst2 has a solution. Any traversal must start with the root Broot.
After it has been processed, 2S units of the blue memory are occupied, which means that
it is full. Without loss of generality (by symmetry), assume that C is the next node to
be executed. Then, we observe that if C(2) was the third executed node, we could never
process Rroot nor R

(2)
root without violating the Mred bound for the red memory. Thus, the

third executed node has to be Rroot.

• We observe that the red tasks Rbig and Rfree, and each communication task Ci, all

have to be processed before R
(2)
root, otherwise, since the execution of R

(2)
root require 3S

1This equivalence has been formally proven in [14] for single-memory platforms, and it is straightforward
to extend the proof for two-memory systems.
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units of memory, it would violate the Mred bound for the red memory. Besides, since
we can not execute R

(2)
root before Rbig, if C(2) were processed before Rbig, there would

be at least S units of memory in the red memory and the execution of Rbig (which
requires 5

2
S units of the red memory) would violate the Mred bound. Thus, the node

Rbig has to be processed before C(2).

• Besides, let i0 be the index of the first processed task Bi in the traversal. Its execution
requires ai0 + 3

2
S units of the blue memory, which implies that it can not be processed

before C(2) without violating the Mblue bound for the blue memory. Thus, the node
Rbig has to be processed before Bi0 .

According to the previous arguments, the only tasks that can be processed right after
Rroot and before Rbig are the communication tasks Ci. Let I be the set of the indices of
the tasks Ci executed after Rroot and before Rbig.

→ After the execution of Rroot, there are 2S units occupied in the red memory and S
units in the blue memory. Thus, to execute Rbig without violating the Mred bound,
the amount of red memory to free is at least S

2
. This means that

∑
i∈I ai ≥

S
2
.

→ Besides, if
∑

i∈I ai >
S
2
, the execution of Bi0 (which requires at least

∑
i∈I ai + 3

2
S

units of the blue memory) will violate the Mblue bound.

Thus,
∑

i∈I ai = S
2
, which implies that Inst1 has a solution.

Suppose now that Inst1 has a solution I. According to the previous reasoning, the
sequence of nodes Broot; C; Rroot; ∀i ∈ I Ci; Rbig and Rfree can be executed without
violating the bounds on memories. After this sequence, there are 3

2
S units occupied in the

blue memory and the red one is empty. The node C(2) can be processed to load S units
from the blue memory to the red one. Now, one of the blue node Bi0 with i0 ∈ I can be
executed without violating the Mblue bound, followed by B′i0 . Moreover, we can process
every Bi and B′i for all i ∈ I to free the blue memory. Then, it is possible to execute every
branch of Ci down to B′i for all i /∈ I. From this point on, we can process the sub-tree

rooted at the node R
(2)
root using the same pattern, which means that Inst2 has a solution

and concludes the proof.

4.2. When one memory is unbounded

In this section, we focus on the computation of Mopt
red (T ) (or Mopt

blue(T )) which represents
the minimal peak memory reachable when there is no constraint on the other memory. We
show that the computation of Mopt

red (T ) and Mopt
blue(T ) for a bi-colored tree T reduces to the

computation of the minimal peak memory for an uncolored tree.

Definition 2. Given a bi-colored tree T , we construct the corresponding uncolored (or for
convenience, single-colored) tree Tblue by turning every communication node and red node
into a blue node, and by turning every red edge of weight fi into a blue edge of weight 0,
as depicted in Figure 4. We construct the single-colored tree Tred in a similar way. We let

11



C1 C2 Cn

B′1 B′2 B′n

Rroot

Rbig

RfreeB1 B2 Bn

C
(2)
1 C

(2)
2 C

(2)
n

B
′(2)
1 B

′(2)
2 B

′(2)
n

R
(2)
root

R
(2)
big

R
(2)
freeB

(2)
1 B

(2)
2 B

(2)
n

Broot

C C(2)

a1 a2 an 3
2
S

3
2
S 3

2
S 3

2
S

a1 a2 an
S

a1 a2 an 3
2
S

3
2
S 3

2
S 3

2
S

a1 a2 an
S

S S

S S

• • •

• • •

...

• • •

• • •

...

Figure 3: Tree used in the proof of Theorem 1

M∞
blue denote the minimal amount of memory needed to process Tblue (and similarly, M∞

red

for Tred).

The following result is straightforward.

Theorem 2. For any bi-colored tree T , we have M∞
red = Mopt

red (T ) and M∞
blue = Mopt

blue(T ).

Proof. Given a bi-colored tree T with n nodes, consider Tblue and M∞
blue as in Definition 2.

We show here that M∞
blue = Mopt

blue(T ). The proof for M∞
red = Mopt

red (T ) is similar.
First, T and Tblue have the same shape. The only differences between T and Tblue

are some edge values and the color of some vertices and edges. Thus, to any feasible
traversal σ of T , we can associate the corresponding feasible traversal σblue of Tblue, and
reciprocally. For any node i ∈ J1, nK of T , its corresponding node in Tblue will be referred
at as iblue ∈ J1, nK, thus σ(i) = σblue(iblue). Moreover we show that BlueMemUsed(σ, i) =
MemUsed(σblue, iblue) for each node i ∈ J1, nK,:

• If color(i) = blue, node i is not changed in Tblue as described in Definition 2. Thus,
BlueMemReq(i) = MemReq(iblue) and the size of the files stored in the memory after
iblue has been processed is the same that the files stored in the blue memory after i
has been processed.

• If color(i) = red, then BlueMemReq(i) = 0 and no file is stored in the blue memory
after i has been processed. Besides, for the corresponding node iblue in Tblue, we have
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Figure 4: A bi-colored tree T and its corresponding single color trees Tblue and Tred in
Definition 2.
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fiblue = 0 and fj = 0 for each j ∈ Children(iblue),. Thus MemReq(iblue) = 0 and no
file is stored in the memory after iblue has been processed.

• If i is uncolored (communication node), then BlueMemReq(i) = fi. There are two
sub-cases:

- If i is a communication node from a blue node to a red node, its processing will
store no file in the blue memory. According to the Definition 2, if jblue denotes
the child of iblue, we have fiblue = fi and fjblue = 0. Thus, MemReq(iblue) = fi
and no file is stored in the memory after iblue has been processed.

- If i is a communication node from a red node to a blue node, its processing
will store a file of size fi in the blue memory. According to the Definition 2,
if jblue denotes the child of iblue, we have fiblue = 0 and fjblue = fi. Thus,
MemReq(iblue) = fi and a file of size fi is stored in the memory after iblue has
been processed.

During the whole process BlueMemReq(σ, i) = MemReq(σblue, iblue). Besides, the size of
the files stored in the blue memory after i has been processed and the size of the files
stored in the memory after iblue has been processed are equal. Thus BlueMemUsed(σ, i) =
MemUsed(σblue, iblue) and Mopt

blue(T ) = M∞
blue.

4.3. Joint minimization of both objectives

Since the traversal problem is NP-complete, it is natural to wonder whether there it is
possible to get a schedule with guaranteed blue and red peak memories, compared to the
optimal ones. In this section, we show that a trade-off must be enforced between these
two objectives: indeed, if one wants a strong guarantee on one memory (blue or red), then
the produced schedule may be arbitrarily bad for the other memory. More specifically,
we prove that there does not exist schedules that can simultaneously approximate both
minimum memories Mopt

blue(T ) and Mopt
red (T ) within arbitrary constant factors, for any bi-

colored tree T . Since the (usually unfeasible) point of the Pareto diagram with coordinates
(Mopt

blue(T ),Mopt
red (T )) is sometimes called the Zenith in multi-objective optimization [7], this

result amounts to proving that there exists no Zenith-approximation.

Definition 3. Given a bi-colored tree T , we can construct the corresponding uncolored
tree Tunco by turning every colored node of T into an uncolored node, as depicted in
Figure 5. We let Mopt

unco(Tunco) be the minimal amount of memory needed to process Tunco.

The following lemma is helpful to prove the inapproximability theorem.

Lemma 1. Given a bi-colored tree T with n nodes, consider an arbitrary traversal σ of T
that requires an amount of red memory equal to Mσ

red(T ) and an amount of blue memory
equal to Mσ

blue(T ). Then necessarily:

Mσ
red(T ) +Mσ

blue(T ) ≥Mopt
unco(Tunco)
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Figure 5: A bi-colored tree T and its corresponding uncolored tree Tunco in Definition 3.

Proof. Let Tunco be the uncolored tree corresponding to T as described in Definition 3.
We observe that T and Tunco have the same tasks, hence to any feasible traversal σ of T ,
we can associate the corresponding feasible traversal σu of Tunco, and reciprocally. For any
node i ∈ J1, nK of T , its corresponding node in Tunco will be referred to as iu ∈ J1, nK, thus
σ(i) = σu(iu).

We will show that

∀i ∈ J1, nK, BlueMemUsed(σ, i) + RedMemUsed(σ, i) = MemUsed(σu, iu)

We proceed along the following case analysis:

• If color(i) = blue, then BlueMemReq(i) = MemReq(iu) and RedMemReq(i) = 0.
Besides, no file is stored in the red memory after i has been processed; also, the size
of the files stored in the blue memory after i has been processed is the same as that
of the files stored in the memory after iu has been processed.

• If color(i) = red, then RedMemReq(i) = MemReq(iu) and BlueMemReq(i) = 0. Be-
sides, no file is stored in the blue memory after i has been processed; also, the size of
the files stored in the red memory after i has been processed is the same as that the
files stored in the memory after iu has been processed.

• If i is uncolored (communication node), then BlueMemReq(i) + RedMemReq(i) =
2 × fi = MemReq(iu). Besides, a file of size fi will be stored in one of the two
memories after i has been processed, and a file of size fi will be stored in the memory
after iu has been processed.
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During the whole traversal, we thus have BlueMemReq(σ, i)+RedMemReq(σ, i) = MemReq(σu, iu).
The sum of the size of the files stored in the blue memory and of the size of the files stored
in the red memory after i has been processed is always equal to the size of the files stored in
the memory after iu has been processed. Thus BlueMemUsed(σ, i) + RedMemUsed(σ, i) =
MemUsed(σu, iu). This means that:

Mopt
unco(Tunco) ≤Mσu

unco(Tunco)
= max

i
MemUsed(σu, i)

= max
i
{BlueMemUsed(σ, i) + RedMemUsed(σ, i)}

≤ max
i
{BlueMemUsed(σ, i)}+ max

i
{RedMemUsed(σ, i)}

= Mσ
red(T ) +Mσ

blue(T )

which concludes the proof.

Theorem 3. Given two constants α and β, there exists no algorithm that is both an α-
approximation for blue memory peak minimization and a β-approximation for red memory
peak minimization, when scheduling bi-colored trees.

Proof. To establish this result, we proceed by contradiction. We therefore assume that
there is an integer α, an integer β, and an algorithm A that processes any bi-colored tree
T using a blue peak memory that is not greater than α times the optimal blue peak memory
Mopt

blue(T ) and using a red peak memory that is not greater than β times the optimal red
peak memory Mopt

red (T ). To derive the contradiction, we use the family of tree (Tn)n∈N
depicted on Figure 6. Tn is defined recursively using Tn−1. To help the reader to visualize
Tn, Figure 7 represents T2.

• ∀n ≥ 2,Mopt
blue(Tn) = 3

Consider the traversal σblue that processes Tn as follows:

- If n = 0, σblue processes the node B0

- If n > 0, σblue processes the nodes Bn and Cn. Then T (left)
n−1 is processed recur-

sively. Nodes Rn and C ′n follow. And finally T (right)
n−1 is processed recursively.

At each step of this process, the traversal σblue does not use more than 3 units of blue
memory. Since BlueMemReq(Bn−1) = 3, this proves that Mopt

blue(Tn) = 3.

• ∀n ≥ 1,Mopt
red(Tn) = 2

Consider the traversal σred that processes Tn as follows. At step k:

- If k = 0, σred processes the node B0

- If k > 0, σred processes the nodes Bk. Then T (left)
k−1 is processed recursively.

Nodes Ck, Rk and C ′k follow. And finally T (right)
k−1 is processed recursively.
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Figure 6: Recursive definition of Tn in the proof of Theorem 3

At each step of this process, the traversal σred does not use more than 2 units of red
memory. Since RedMemReq(Rn) = 2, this proves that Mopt

red (Tn) = 2.

• Let T unco
n be the uncolored tree corresponding to Tn as describe in Definition 3

and Mopt
unco(T unco

n ) the minimum amount of memory required to execute it. T unco
2

is depicted in Figure 7. We now prove by induction that Mopt
unco(T unco

n ) = n + 2
for n ≥ 2. As show in [18], post-order traversals are optimal for peak memory
minimization of uncolored trees with unit costs. Besides, all post-order traversals of
T unco
n require the same amount of memory. Thus Mopt

unco(T unco
n ) = Mopt

unco(T unco
n−1 ) + 1

for n ≥ 2. Since Mopt
unco(T unco

1 ) = 2, we have the result.

By hypothesis, algorithm A can process any Tn with MA
blue(Tn) ≤ α.Mopt

blue(Tn) = 3α and
MA

red(Tn) ≤ β.Mopt
red (Tn) = 2β. Let n0 = d3α + 2βe, we have:

MA
blue(Tn0) +MA

red(Tn0) ≤ 3α + 2β

< d3α + 2βe+ 2

= Mopt
unco(T unco

n0
)

This contradicts Lemma 1, which means that such an algorithm A cannot exist.

5. Depth-first traversals

In this section, we study depth-first traversals, which are the equivalent of post-order
traversals for in-trees. In the context of single-memory trees, depth-first traversals are
known to be sub-optimal [18]: worse, their memory usage can be arbitrarily high as com-
pared to that of the optimal solution [14]. Clearly, these negative results remain true in
a two-memory framework (simply assume that one memory is infinite). Still, depth-first
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2 in the proof of Theorem 3.

traversals are a natural heuristic for traversing tree graphs, and they enjoy a simple imple-
mentation and memory management. As such, they are the most commonly used traversals
in actual sparse solvers like MUMPS [2, 3].

We show how to compute the optimal depth-first traversal in Section 5.1. It turns out
that this traversal is optimal for both memory usages (among all depth-first traversals).
However, depth-first traversals give no freedom on scheduling communication nodes. If
we allow a communication node to be processed not immediately before its sub-tree, the
ordering of the processing of the sub-trees and of the communication nodes will create a
trade-off between both memory usages and will allow to decrease them. This leads us to
define sloppy depth-first traversals, which we study in Section 5.2.

5.1. Strict depth-first traversals

Definition 4. A depth-first traversal is a feasible traversal that processes all nodes of a
tree T by processing the root and, then, recursively processing all sub-trees. Hence, in a
post-order traversal, after processing a node i, the whole sub-tree rooted at i is completely
processed before any other node that does not belong to this sub-tree. Formally, a feasible
traversal σ of the tree T with n nodes is a depth-first traversal if and only if for each node
r ∈ T , with two children i ∈ Children(r) and j ∈ Children(r), we have:

σ(i) < σ(j)⇒ (∀u ∈ Ti, σ(u) < σ(j))

where Ti is the sub-tree rooted at the node i.

In the context of single-memory trees, depth-first traversals are known to be sub-
optimal [18]: worse, their memory usage can be arbitrarily high as compared to that
of the optimal solution [14]. Clearly, these negative results remain true in a two-memory
framework (simply assume that one memory is infinite). Still, depth-first traversals are a
natural heuristic for traversing tree graphs, and they enjoy a simple implementation and
memory management. As such, they are the most commonly used traversals in actual
sparse solvers. Algorithm 1 computes the optimal depth-first traversal: when it encounters
a blue node (respectively a red node), it applies the rule for minimizing the blue (resp. red)
memory in depth-first traversals, which does not impact the amount of red (resp. blue)
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memory. It turns out that this traversal is optimal among all depth-first traversals for both
memory usages.

Theorem 4. Algorithm 1 returns the best depth-first traversal σ of T for both the blue
and the red memories and the amount of memory Mblue and M red used by σ.

Algorithm 1: BestDepthFirstTraversal(T )

output: Schedule σ with peak blue memory M blue and peak red memory M red

root ← the root of T ;
CurrentMem ← 0;
(σ,M blue,M red)← ([root] , 0, 0);
for i ∈ Children(root) do

(σi, M
blue
i , M red

i ) ← BestDepthFirstTraversal(Ti);
CurrentMem ← CurrentMem + fi

if color(root) = blue then
for i ∈ Children(root) in the increasing order of Mblue

i − fi do
σ ← [σ;σi];
CurrentMem ← CurrentMem − fi;
M blue ← max(M blue,CurrentMem +M blue

i );

M red ← maxi∈Children(root)M
red
i ;

if color(root) = red then
for i ∈ Children(root) in the increasing order of M red

i − fi do
σ ← [σ;σi];
CurrentMem ← CurrentMem − fi;
M red ← max(M red,CurrentMem +M red

i );

M blue ← maxi∈Children(root)M
blue
i ;

if the root node is an uncolored communication node then
i ← the unique child of root; σ ← [σ;σi];
if color(i) = blue then

M blue ←M blue
i ;

M red ← max(fi,M
red
i );

if color(i) = red then
M red ←M red

i ;
M blue ← max(fi,M

blue
i );

return (σ, M blue, M red);

Proof. Finding the best depth-first traversal of T amounts to find the best ordering to
process every sub-tree. We prove that the order of the recursive processes at each step in
Algorithm 1 is the best for both memories.
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• At a given step, if the root of the sub-tree is a communication node, we have no
choice, and we recursively process the sub-tree rooted at its unique child.

• At a given step, if the root r of the sub-tree is blue, then, the amount of red memory
used to process this sub-tree will not depend on the order of the recursive processes to
complete the sub-tree. Indeed, for each i ∈ Children(r), after the recursive process of
Ti, Sblue ← Sblue\{i} and Sred is unchanged. Then, independently of the order of the
recursive processes of every Ti, the amount of red memory required to process T with
a depth-first traversal will be RedMemReq(T ) = maxi∈Children(root) RedMemReq(Ti).
Thus, at this step, we can only optimize the amount of blue memory. To do so, we
use the optimal post-order traversal for uncolored trees provided by Liu [17]. This
post-order traversal leads the best depth-first traversal for the blue memory at this
step, and, thus, to the best depth-first traversal for both memories.

• At a given step, if the root of the sub-tree is red, the proof is similar.

5.2. Sloppy depth-first traversals

As explained in the previous section, the order of the sub-trees processed in a strict
depth-first traversal does not influence the maximum usage of red memory for a tree rooted
at a blue node, and vice versa. Thus, in a strict depth-first traversal, both memory usages
are independent. This comes from the fact that strict depth-first traversals give no freedom
on communications. If we allow a communication node to be processed not immediately
before its sub-tree, the ordering of the processing of the sub-trees and of the communication
nodes will create a trade-off between both memory usages. This leads us to define sloppy
depth-first traversals.

Definition 5. A sloppy depth-first traversal is a feasible traversal similar to a depth-first
traversal except that, after processing a communication node i, the whole sub-tree rooted
at i is not necessarily processed immediately. We define SloppyChildren(i) as being the set
of thc red and blue children of i, together with the children of the uncolored children (these
represent the set of the computational children of i). Formally, a feasible traversal σ of the
tree T with n nodes is a sloppy depth-first traversal if and only if for each node r ∈ T ,
and for any two nodes i ∈ Children(r) and j ∈ SloppyChildren(r) ∪ Children(r), we have:

σ(i) < σ(j)⇒ (∀u ∈ Ti, σ(u) < σ(j))

where Ti is the sub-tree rooted at the node i.

Definition 6 (TwoMemorySloppyDepthFirstTraversal). Given a tree T with n
nodes, and two fixed amount of memory Mred and Mblue, is there a sloppy depth-first
traversal of the tree that need an amount of red memory inferior to Mred and an amount
of blue memory inferior to Mblue?
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Theorem 5. The TwoMemorySloppyDepthFirstTraversal problem is NP-complete.

Proof. The problem clearly belongs to NP, and the certificate is the ordered list of tasks
(of both colors, and including communication nodes) executed by the schedule.

To establish the completeness, we use a reduction to the 2-Partition problem [8]. Con-
sider an instance Inst1 of the 2-Partition problem, with n integers {a1, a2, ..., an ‖∑

i ai = S}. Consider an instance Inst2 of the decision problem, consisting in the tree
depicted on Figure 8. We set Mred = 2S for the red tasks and Mblue = 2S for the blue
tasks. The construction of Inst2 is polynomial in the size of Inst1.

Assume first that Inst2 has a solution. Any sloppy depth-first traversal must start with
the root Broot. After it has been processed, 2S units of the blue memory are occupied,
which means that this memory is full. Let i0 be the index of the first red task Ri to be
executed. We observe that Bbig and Bfree have to be processed before Ri0 , otherwise the
process of C ′i0 (which occurs right after the process of Ri0 in a sloppy depth-first traversal)
would violate the Mblue bound on the blue memory. Thus, the only tasks that can be
processed right after Broot and before Bbig are the communication tasks Ci. Let I be the
set of the indices of the tasks Ci executed before Bbig.

• If
∑

i∈I ai <
S
2
, when the scheduler decides to execute Bbig, the blue memory would be

filled with
∑

i/∈I ai+S units. Thus the process of Bbig will use BlueMemUsed(Bbig) =∑
i/∈I ai + S + 3

2
S > 2S units of blue memory, which violates the Mblue bound.

• If
∑

i∈I ai >
S
2
, when the scheduler decides to execute Ri0 , the red memory would

be filled with at least
∑

i∈I ai >
S
2

units. Thus the process of Ri0 will use at least
RedMemUsed(Ri0) ≥

∑
i∈I ai+

3
2
S > 2S units of red memory, which violates the Mred

bound.

Thus,
∑

i∈I ai = S
2
, which implies that Inst1 has a solution.

Suppose now that Inst1 has a solution I. According to the previous reasoning, the
sequence of nodes Broot; ∀i ∈ I, Ci; Bbig and Bfree can be executed without violating the
bounds on memories. After this sequence, there are S

2
units occupied in the blue memory

and in the red one. Now, one of the red node Ri0 with i0 ∈ I can be executed without
violating the Mred bound, followed by C ′i0 and Bi0 . Moreover, we can process every Ri, C

′
i

and Bi ∀i ∈ I. Then, one is able to execute every branch of Ci down to Bi for all i /∈ I,
which means that Inst2 has a sloppy depth-first solution and concludes our proof.

6. Heuristics

In addition to depth-first traversals, in this section we present three traversal heuristics
which aim at minimizing both the blue and red memories. All three heuristics are based
on the seminal work by Liu [18] who considers a single memory. We proposed different
adaptation for two memories. We start with the simplest heuristic and then proceed to
more elaborate ones.
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Figure 8: Tree corresponding to Inst2 in the proof of Theorem 5

Working with the uncolored tree: LiuUncolored. We have shown that the problem
TwoMemoryTraversal of finding a tree-traversal that minimizes both memory is NP-
complete. However, when a single memory is considered, the problem becomes polynomial.
It is thus natural to adapt the optimal algorithm for the single memory problem proposed
by Liu [18], to bi-colored trees. The simplest adaptation amounts to considering the tree
as uncolored, that is, as if all tasks were processed on the same computing unit with a
single memory. On this uncolored tree, illustrated on Figure 4, we apply Liu’s optimal
algorithm. This heuristic computes an optimal traversal for the sum of the blue and the
red memories. The intuition is that minimizing the sum of both memories will lead to a
good memory usage for each of them. This heuristic is referred to as LiuUncolored in
the following.

Refining the sum with weights: LiuWeightedSum. One problem with the previous heuris-
tic is that both memories may not be equivalent. For example, it may well be the case that
(input and output) files used by red tasks are much larger that those used by blue tasks.
In such a case, minimizing the sum may lead to a much larger amount of blue memory that
would be needed, for example, in an optimal traversal for the blue memory. This behavior
is not desirable, and we can slightly change the heuristic to (try to) avoid this. We first
compute the optimal amount of blue (respectively red) memory that is needed to traverse
the tree, as described in Section 4.2, and we denote this amount by M∞

blue (resp. M∞
red).
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Then, we normalize the memory weight of edges as follows: the memory weight fi of the
input edge of node i becomes fi/M

∞
blue if this edge is blue, and fi/M

∞
red if it is red. Then,

the corresponding uncolored tree is considered and Liu’s optimal algorithm is applied, as
in the previous heuristic. This heuristic is called LiuWeightedSum in the following.

LiuWeightedMax. In the previous heuristics, when applying Liu’s algorithm to modified
trees, we minimize the sum (or the weighted sum) of both memory amounts. However,
to get closer to the Zenith point, we would like to minimize the maximum, or rather the
weighted maximum of both memories. It is possible to modify Liu’s algorithm for this
new goal. Of course, the resulting algorithm is not optimal anymore (which is coherent
with the NP-completeness of the TwoMemoryTraversal problem), but it can be used
as a heuristic. Liu’s algorithm is a recursive algorithm which, at each node r, combines
optimal traversals for the subtrees rooted at the children of r into an optimal traversal
for the whole tree rooted in r. The combination relies on the definition of “hill-valley”
segments: segments are defined by splitting a subtree schedule at different local minima (the
“valley”). These segments are then sorted by non-increasing “hill” minus “valley” values
(hill being the local peak memory of the segment). Liu [18] proves that such a combination
of optimal subtree schedules leads to a global optimal schedule. In this heuristic, we
replace the memory criterion used to define of the schedule by the maximum weighted
memory: max(BlueMemUsed(σ,i)

Mopt
blue(T )

, RedMemUsed(σ,i)

Mopt
red (T ) ); we keep the same algorithm for combining

subtree schedules. Of course, the proof of optimality does not hold for this new metric.
This heuristic is called LiuWeightedMax in the following.

7. Experiments

In this section, we experimentally compare the memory usage of the heuristics pro-
posed in the previous sections for TwoMemoryTraversal. For each heuristic among
BestDepthFirst, LiuUncolored, LiuWeightedSum and LiuWeightedMax, we
compute the amount of blue and red memory needed by the traversal. These values are
compared to the minimum amount of blue (respectively red) memory needed when the red
(resp. blue) memory is unbounded, as described in Section 4.2.

All heuristics have been implemented in C. The optimal value traversal for a single
memory is computed using Liu’s algorithm [18] written as a recursive code. Source code
for all the algorithms, heuristics and experiments is publicly available at http://perso.

ens-lyon.fr/julien.herrmann/.

7.1. Data Sets

We use four different sets of trees, ranging from actual trees arising in sparse matrix
computations to random trees. We first describe the data set of uncolored trees which
serves as a basis for our realistic colored trees.
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Real uncolored trees for Cholesky factorization. The UncoloredRealTrees data set
contains assembly trees for a set of sparse matrices obtained from the University of Florida
Sparse Matrix Collection (http://www.cise.ufl.edu/research/sparse/matrices/). The cho-
sen matrices satisfy the following assertions: not binary, not corresponding to a graph,
square, having a symmetric pattern, a number of rows between 20,000 and 2,000,000, a
number of non-zeros per row at least equal to 2.5, and a total number of non-zeros at most
equal to 5,000,000; and each chosen matrix has the largest number of non-zeros among
the matrices in its group satisfying the previous assertions. At the time of testing, there
were 76 matrices satisfying these properties. We first order the matrices using MeTiS [15]
(through the MeshPart toolbox [10]) and amd (available in Matlab), and then build the
corresponding elimination trees using the symbfact routine of Matlab. We also perform a
relaxed node amalgamation on these elimination trees to create assembly trees. We have
created a large set of instances by allowing 1, 2, 4, and 16 (if more than 1.6× 105 nodes)
relaxed amalgamations per node. At the end we compute memory weights and processing
times to accurately simulate the matrix factorization: we compute the memory weight ni
of a node as η2 + 2η(µ − 1), where η is the number of nodes amalgamated, and µ is the
number of non-zeros in the column of the Cholesky factor of the matrix which is associ-
ated with the highest node (in the starting elimination tree); the processing cost wi of a
node is defined as 2/3η3 + η2(µ− 1) + η(µ− 1)2 (these terms corresponds to one Gaussian
elimination, two multiplications of a triangular η × η matrix with a η × (µ − 1) matrix,
and one multiplication of a (µ − 1) × η matrix with a η × (µ − 1) matrix). Edge weights
fi are computed as (µ− 1)2.

The resulting 644 trees contains from 2, 000 to 1, 000, 000 uncolored nodes. Their depth
ranges from 12 to 70, 000, and their maximum degree ranges from 2 to 175, 000.

Real colored trees for Cholesky factorization. The RealTrees data set is obtained by
coloring every tree in UncoloredRealTrees in a meaningful way. Every tree node in
UncoloredRealTrees represents a step of a (η+µ−1)×(η+µ−1) matrix factorization,
with a panel of size η. In practice, at each step of the factorization, we aim at processing
the GEMM routine (which corresponds to the multiplication of the (µ − 1) × η matrix
with the η × (µ − 1) matrix) on the GPU. Indeed, GEMMs can reach up to 99% of the
GPU’s theoretical peak performance. Thus, we split every node into two tasks: a red
one corresponding to the GEMM routine, and a blue one corresponding to the rest of the
factorization.

Real trees with random colors. The RandomColoredRealTrees data set is obtained by
randomly coloring every node of every tree in UncoloredRealTrees with an equiprob-
able choice in the set {red, blue}. Then, communication nodes are added between nodes of
different colors.

Real trees with random weights and colors. The RandomWeightedRealTrees data
set is obtained by randomly coloring every node of every tree in UncoloredRealTrees
with an equiprobable choice in the set {red, blue} and by randomly changing the nodes and
edges weight. Every ni is set to a random integer value in J1, N

500
K where N is the size of
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the tree, and every fi is set to a random integer value in J1, NK. Then, communication
nodes are added between nodes of different colors.

Random trees. The RandomTrees data set is a set of 500 trees with random structure,
random weights and random colors. Each tree has been generated as follows: the tree size
N is randomly chosen in J1, 32767K. Then, for each node i ∈ J1, NK, its parent is randomly
chosen in J1, i − 1K. The values of its ni and fi are uniformly chosen in J1, 3276K, and its
color is randomly chosen between red and blue. Then, communication nodes are added
between nodes of different colors.

7.2. Results

In this section, we evaluate the performance of the four heuristics introduced above in
terms of memory requirement. For every tree T in the data sets, and for every traversal
σ returned by the heuristics, we compute the maximum relative overhead of each memory
compared to the optimal value:

MaxRelativeOverhead(σ, T ) = max(
Mσ

blue(T )−M
opt
blue(T )

Mopt
blue(T )

,
Mσ

red(T )−M
opt
red (T )

Mopt
red (T ) ).

As explained in Section 3, the optimal for both memories (also called Zenith) is a theoretical
bound that may be not reachable. Thus, for a tree T , there does not necessarily exist a
traversal σ such that MaxRelativeOverhead(σ, T ) = 0. Detailed statistics for the four
heuristics are given in Table 2. We make the following observations:

• For the RealTrees data set, BestDepthFirst statistically gives the best results,
with an average relative overhead equal to 6.3%; it reaches the Zenith for 55.6% of
the trees. This comes from the particular structure of the assembly trees. Indeed,
most nodes in these assembly trees have an input file smaller than the sum of their
output files: fi ≤

∑
j∈Children(i) fj. This means that when we execute a node, it is

more likely to be profitable to execute the whole subtree straightaway. This is why
BestDepthFirst turns out to be the best heuristic for the RealTrees and the
RandomColoredRealTrees data sets. Besides, LiuUncolored is very close to
the BestDepthFirst performances on the RealTrees data set, with an average
relative overhead equal to 6.6%. On the contrary, LiuWeightedMax appears to
be not well-designed for the structure of the assembly trees in RealTrees, with an
average relative overhead equal to 8.4%; it can require up to 2.16 times the optimal
memory for some trees.

• The structure of the trees in the RandomColoredRealTrees data set is close
to the trees in RealTrees, and the results are similar. BestDepthFirst statis-
tically gives the best results with an average relative overhead equal to 3.8%, and
LiuUncolored provides the second best results with relative overhead equal to
5.2%.

• For the RandomWeightedRealTrees data set, file sizes are randomized, and
BestDepthFirst is no longer adapted to such trees; it provides an average rela-
tive overhead equal to 20.9%. Much worse, LiuUncolored can require up to 5.13
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times the optimal memory for some trees in RandomWeightedRealTrees. On
the contrary, LiuWeightedMax appears to be well-designed for the trees in Ran-
domWeightedRealTrees, with an average relative overhead two times lower than
that of BestDepthFirst.

• The results for the RandomTrees data confirm that LiuWeightedMax is the
best of the four heuristics when dealing with trees with random structure. It gives
the best results with an average relative overhead equal to 3.4%, and exhibits a
relative overhead inferior to 10% for 92% of the random trees.

Figures 10, 11 and 12 provide complete results of the simulations. In each figure, a point
represents one scenario (one heuristic executed on one tree of the data set). To better
visualize the distribution, we also plot a ”cross” for each heuristic: the center of this cross
is the average result, while the branches represent the scope of each objective between the
10th and 90th percentile of the distribution.

For the RealTrees data set, as explained above, we colored in red the nodes cor-
responding to the GEMM routine, and in blue the others nodes. Thus, every red nodes
appears to have a communication node as father, and an unique communication node as
child. With this structure, all of our heuristics gives the optimal memory usage for the red
memory. This specification fits well with practice, where one aims at not overloading the
GPU memory. Figure 9 provides the detailed distribution of the blue memory usage for
the heuristics.

These figures exhibit the same trends for average values as observed in Table 2. For the
RandomColoredRealTrees data set in Figure 10, and for the RandomTrees data
set in Figure 12, we see that many traversals returned by the heuristics are optimal for
at least one of the two memories, whereas for the RandomWeightedRealTrees data
set in Figure 11, many more of the returned traversals are non-optimal for either memory.
We also observe that LiuUncolored can require around 5 times the optimal red memory
in two scenarios. These results show that the performance of the heuristics are strongly
related to the structure of the trees. While BestDepthFirst achieves nice results for the
realistic assembly trees, LiuWeightedMax appears to be a better solution when dealing
with more random structures.

8. Conclusion

In this paper, we have studied the bi-criteria memory minimization problem that arises
when traversing a task tree for a system composed of two different computing units with
their own memory. After relating this problem to the well-studied one-memory problem,
we have proved that the search for an optimal solution is NP-complete, and that it was
impossible to approximate both memories by any pair of constant factors. In addition, we
have determined the optimal depth-first traversal, which turns out to minimize both mem-
ories simultaneously. This depth-first traversal achieves nice results for realistic assembly
trees. We have also proposed several heuristics, based upon extensions of Liu’s optimal
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Data set Algorithm Avg. Max. Std. Dev. Frac. of Opt. Frac. ≤ 10%

RealTrees

BestDepthFirst 6.3% 64.4% 8.0% 55.6% 73.7%
LiuWeightedMax 8.4% 116.5% 9.9% 49.8% 68.3%
LiuWeightedSum 7.5% 76.0% 9.1% 52.8% 70.6%
LiuUncolored 6.6% 60.0% 8.3% 55.0% 73.8%

RandomColoredRealTrees

BestDepthFirst 3.8% 44.0% 5.4% 67.2% 83.9%
LiuWeightedMax 6.0% 52.3% 7.2% 51.4% 75.5%
LiuWeightedSum 5.9% 52.6% 7.3% 54.1% 75.8%
LiuUncolored 5.2% 52.6% 6.9% 59.7% 78.0%

RandomWeightedRealTrees

BestDepthFirst 20.9% 90.3% 18.6% 28.3% 44.6%
LiuWeightedMax 10.2% 88.2% 13.6% 39.8% 72.7%
LiuWeightedSum 13.4% 107.5% 16.3% 37.7% 65.2%
LiuUncolored 15.4% 413.1% 17.0% 26.5% 60.2%

RandomTrees

BestDepthFirst 4.5% 28.2% 4.3% 33.4% 83.4%
LiuWeightedMax 3.4% 23.5% 3.2% 26.0% 92.0%
LiuWeightedSum 4.4% 21.4% 3.7% 20.6% 86.0%
LiuUncolored 6.8% 32.9% 4.8% 14.6% 72.6%

Table 2: Statistics on the maximum relative overhead for each memory required by the four
heuristics (comparison with the Zenith). Frac. of Opt. (respectively Frac ≤ 10%) counts
the fractions of cases when the heuristics achieve the Zenith (resp. has a degradation not
larger than 10%).
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Figure 9: Percentage distribution of the blue memory usage for the RealTrees data set.

algorithm for the one-memory problem. These heuristics provide very good solutions when
dealing with arbitrary tree graphs.

Admittedly, the platform model used in this paper is a simplified one, but this was the
key to derive complexity results in this initial study. In future work, the model should be
refined in several directions, so as to more accurately account for all the characteristics of
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Figure 10: Distribution of each memory usage for the RandomColoredRealTrees
data set.

hybrid platforms (using both CPUs and GPUs); however, this is not expected to change
the NP-completeness results. A first step towards a more realistic model would be to
include computation times for the tasks, and to try to minimize both the processing time
of the total tree, and the amount of blue and red memories needed. A second step would
consist in providing each task with two different running times rather than a color, and
to give the ability for the scheduler to choose the computing unit for each task based on
running time and memory. Given the complexity of the problem in the simple case, we
do not expect to find approximation algorithms, but rather to design simple heuristics
(as BestDepthFirst) that may be optimal under restrictive conditions, either on the
traversal type or on the tree structure.
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Figure 11: Distribution of each memory usage for the RandomWeightedRealTrees
data set.
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