
Designing LU-QR hybrid solvers for performance and stability

Mathieu Faverge1, Julien Herrmann2, Julien Langou3∗,
Bradley R. Lowery3∗, Yves Robert2,4† and Jack Dongarra4

1. Laboratoire LaBRI, IPB ENSEIRB-MatMeca, Bordeaux, France
2. Laboratoire LIP, École Normale Supérieure de Lyon, France

3. University Colorado Denver, USA
4. University of Tennessee Knoxville, USA

Abstract—This paper introduces hybrid LU-QR algorithms
for solving dense linear systems of the form Ax = b. Through-
out a matrix factorization, these algorithms dynamically alter-
nate LU with local pivoting and QR elimination steps, based
upon some robustness criterion. LU elimination steps can be
very efficiently parallelized, and are twice as cheap in terms of
operations, as QR steps. However, LU steps are not necessarily
stable, while QR steps are always stable. The hybrid algorithms
execute a QR step when a robustness criterion detects some
risk for instability, and they execute an LU step otherwise.
Ideally, the choice between LU and QR steps must have a
small computational overhead and must provide a satisfactory
level of stability with as few QR steps as possible. In this paper,
we introduce several robustness criteria and we establish upper
bounds on the growth factor of the norm of the updated matrix
incurred by each of these criteria. In addition, we describe the
implementation of the hybrid algorithms through an extension
of the PaRSEC software to allow for dynamic choices during
execution. Finally, we analyze both stability and performance
results compared to state-of-the-art linear solvers on parallel
distributed multicore platforms.

I. INTRODUCTION

Consider a dense linear system Ax = b to solve, where A
is a square tiled-matrix, with n tiles per row or column. Each
tile is a block of nb-by-nb elements, so that the actual size of
A is N = n×nb. Here, nb is a parameter tuned to squeeze
the most out of arithmetic units and memory hierarchy.
To solve the linear system Ax = b, with A a general
matrix, one usually applies a series of transformations, pre-
multiplying A by several elementary matrices. There are two
main approaches: LU factorization, where one uses lower
unit triangular matrices, and QR factorization, where one
uses orthogonal Householder matrices. The LU factorization
update is based upon matrix-matrix multiplications, a kernel
that can be very efficiently parallelized, and whose library
implementations typically achieve close to peak CPU per-
formance. Unfortunately, the efficiency of LU factorization
is hindered by the need to perform partial pivoting at each
step of the algorithm, to ensure numerical stability. On the
contrary, the QR factorization is always stable, but requires

∗The research of this author was fully supported by the National Science
Foundation grant # NSF CCF 1054864.
†The research of this author was supported in part by the French ANR

Rescue project and by the Department of Energy # DOE DE-SC0010682.

twice as many operations, and a more complicated update
step that is not as parallel as a matrix-matrix product. Tiled
QR factorizations [1], [2] greatly improve the parallelism of
the update step since they involve no pivoting but are based
upon more complicated kernels whose library implementa-
tions requires twice as many operations as LU.

The main objective of this paper is to explore the design
of hybrid algorithms that would combine the low cost and
high CPU efficiency of the LU factorization, while retaining
the numerical stability of the QR approach. The main idea
is the following: at each step of the elimination, we perform
a robustness test to know if the diagonal tile can be stably
used to eliminate the tiles beneath it using an LU step. If the
test succeeds, then go for an elimination step based upon LU
kernels, without any further pivoting involving sub-diagonal
tiles in the panel. Otherwise, if the test fails, then go for
a step with QR kernels. On the one extreme, if all tests
succeed throughout the algorithm, we implement an LU
factorization without pivoting.On the other extreme, if all
tests fail, we implement a QR factorization. On the average,
only a fraction of the tests will fail. If this fraction remains
small enough, we will reach a CPU performance close to
that of LU without pivoting. Of course the challenge is to
design a test that is accurate enough (and not too costly) so
that LU kernels are applied only when it is numerically safe
to do so.

Implementing such a hybrid algorithm on a state-of-the-art
distributed-memory platform, whose nodes are themselves
equipped with multiple cores, is a programming challenge.
Within a node, the architecture is a shared-memory machine,
running many parallel threads on the cores. But the global
architecture is a distributed-memory machine, and requires
MPI communication primitives for inter-node communica-
tions. We rely on the PaRSEC software [3], so that we
can concentrate on the algorithm and forget about MPI and
threads. Once we have specified the algorithm at a task level,
the PaRSEC software will recognize which operations are
local to a node (and hence correspond to shared-memory
accesses), and which are not (and hence must be converted
into MPI communications). Previous experiments show that
this approach is very powerful, and that the use of a
higher-level framework does not prevent our algorithms from

achieving the same performance as state-of-the-art library
releases [4].

However, implementing a hybrid algorithm requires the
programmer to implement a dynamic task graph of the
computation. Indeed, the task graph of the hybrid factor-
ization algorithm is no longer known statically (contrarily
to a standard LU or QR factorization). At each step of the
elimination, we use either LU-based or QR-based tasks, but
not both. This requires the algorithm to dynamically fork
upon the outcome of the robustness test, in order to apply
the selected kernels. The solution is to prepare a graph that
includes both types of tasks, namely LU and QR kernels, to
select the adequate tasks on the fly, and to discard the useless
ones. We have to join both potential execution flows at the
end of each step, symmetrically. Most of this mechanism is
transparent to the user. We discuss this extension of PaRSEC
in more detail in Section IV.

The major contributions of this paper are the following:
(i) the introduction of new LU-QR hybrid algorithms; (ii)
the design of several robustness criteria, with bounds on the
induced growth factor; (iii) a comprehensive experimental
evaluation of the best trade-offs between performance and
numerical stability; and (iv) he extension of PaRSEC to deal
with dynamic task graphs. The rest of the paper is organized
as follows. First we explain the main principles of LU-QR
hybrid algorithms in Section II. Then we describe robustness
criteria in Section III. Next we detail the implementation
within the PaRSEC framework in Section IV. We report
experimental results in Section V. We discuss related work
in Section VI. Finally, we provide concluding remarks and
future directions in Section VII.

II. HYBRID LU-QR ALGORITHMS

In this section, we describe hybrid algorithms to solve a
dense linear system Ax = b, where A = (Aij)(i,j)∈J1..nK2

is a square tiled-matrix, with n tiles per row or column. Each
tile is a block of nb-by-nb elements, so that A is of order
N = n× nb.

The common goal of a classical one-sided factorization
(LU or QR) is to triangularize the matrix A through a
succession of elementary transformations. Consider the first
step of such an algorithm. We partition A by block such

that A =

(
A11 C
B D

)
. In terms of tile, A11 is 1-by-1, B is

(n−1)-by-1, C is 1-by-(n−1), and D is (n−1)-by-(n−1).
The first block-column

(
A11

B

)
is the panel of the current

step.
Traditional algorithms (LU or QR) perform the same type

of transformation at each step. The key observation of this
paper is that any type of transformation (LU or QR) can be
used for a given step independently of what was used for
the previous steps. The common framework of a step is the

following:(
A11 C
B D

)
⇔
(

factor apply
eliminate update

)
⇔
(
U11 C ′

0 D′

)
.

(1)
First, A11 is factored and transformed in the upper triangular
matrix U11. Then, the transformation of the factorization of
A11 is applied to C. Then A11 is used to eliminate B. Finally
D is accordingly updated. Recursively factoring D′ with the
same framework will complete the factorization to an upper
triangular matrix. For each step, we have a choice for an
LU step or a QR step. The operation count for each kernel
is given in Table I.

LU step, var A1 QR step
factor A 2/3 GETRF 4/3 GEQRT
eliminate B (n− 1) TRSM 2(n− 1) TSQRT
apply C (n− 1) TRSM 2(n− 1) TSMQR
update D 2(n− 1)2 GEMM 4(n− 1)2 UNMQR

Table I: Computational cost of each kernel. The unit is n3b
operations.

Generally speaking, QR transformations are twice as
costly as their LU counterparts. The bulk of the compu-
tations take place in the update of the trailing matrix D.
This obviously favors LU update kernels. In addition, the
LU update kernels are fully parallel and can be applied
independently on the (n − 1)2 trailing tiles. Unfortunately,
LU updates (using GEMM) are stable only when ‖A−111 ‖−1
is larger than ‖B‖ (see Section III). If this is not the case,
we have to resort to QR kernels. Not only are these are
twice as costly, but they also suffer from enforcing more
dependencies: all columns can still be processed (apply
and update kernels) independently, but inside a column, the
kernels must be applied in sequence.

The hybrid LU-QR Algorithm uses the standard 2D block-
cyclic distribution of tiles along a virtual p-by-q cluster
grid. The 2D block-cyclic distribution nicely balances the
load across resources for both LU and QR steps. Thus
at step k of the factorization, the panel is split into p
domains of approximately n−k+1

p tile rows. Domains will
be associated with physical memory regions, typically a
domain per node in a distributed memory platform. Thus
an important design goal is to minimize the number of
communications across domains, because these correspond
to nonlocal communications between nodes. At each step
k of the factorization, the domain of the node owning the
diagonal tile Akk is called the diagonal domain.

The hybrid LU-QR Algorithm applies LU kernels when
it is numerically safe to do so, and QR kernels otherwise.
Coming back to the first elimination step, the sequence of
operations is described in Algorithm 1.

Several variants (QR factorization of the diagonal, block
LU factorization) are described in the companion technical
report [5].

Algorithm 1: Hybrid LU-QR algorithm
for k = 1 to n do

Factor: Compute a factorization of the diagonal tile:
either with LU partial pivoting or QR;
Check: Compute some robustness criteria (see Section
III) involving only tiles Ai,k, where k ≤ i ≤ n, in the
elimination panel;
Apply, Eliminate, Update:
if the criterion succeeds then

Perform an LU step;
else

Perform a QR step;

Algorithm 2: Step k of an LU step - var (A1)
Factor: Akk ← GETRF (Akk) ;
for i = k + 1 to n do

Eliminate: Aik ← TRSM(Akk, Aik);

for j = k + 1 to n do
Apply: Akj ← SWPTRSM(Akk, Akj);

for i = k + 1 to n do
for j = k + 1 to n do

Update: Aij ← GEMM(Aik, Akj , Aij);

A. LU step

We assume that the criterion validates an LU step (see
Section III). We describe the variant (A1) of an LU step
given in Algorithm 2. The kernels for the LU step are the
following:
• Factor: Akk ← GETRF (Akk) is an LU factorization

with partial pivoting: PkkAkk = LkkUkk, the output
matrices Lkk and Ukk are stored in place of the input
Akk.

• Eliminate: Aik ← TRSM(Akk, Aik) solves in-place,
the upper triangular system Aik ← AikU

−1
kk , with Ukk

stored in the upper part of Akk.
• Apply: Akj ← SWPTRSM(Akk, Aik) solves the unit

lower triangular system Akj ← L−1kk PkkAkj , with Lkk
stored in the (strictly) lower part of Akk.

• Update: Aij ← GEMM(Aik, Akj , Aij) is a general
matrix product Aij ← Aij −AikAkj .

In terms of parallelism, the factorization of the diagonal
tile is followed by the TRSM kernels that can be processed
in parallel, then every GEMM kernel can be processed
concurrently. These highly parallelizable updates constitute
one of the two main advantages of the LU step over the QR
step. The second main advantage is halving the number of
operations.

During the factor step, one variant is to factor the whole
diagonal domain instead of only factoring the diagonal tile.
Considering Algorithm 2, the difference lies in the first line:
rather than calling GETRF (Akk), thereby searching for
pivots only within the diagonal tile Akk, we implemented

Algorithm 3: Step k of the HQR factorization
for i = k + 1 to n do

elim(i, eliminator(i, k), k);

Algorithm 4: Elimination elim(i, eliminator(i, k), k)
(a) With TS kernels
Aeliminator(i,k),k ← GEQRT (Aeliminator(i,k),k);
Ai,k, Aeliminator(i,k),k ←
TSQRT (Ai,k, Aeliminator(i,k),k);
for j = k + 1 to n− 1 do

Aeliminator(i,k),j ←
UNMQR(Aeliminator(i,k),j , Aeliminator(i,k),k;
Ai,j , Aeliminator(i,k),j ←
TSMQR(Ai,j , Aeliminator(i,k),j , Ai,k);

(b) With TT kernels
Aeliminator(i,k),k ← GEQRT (Aeliminator(i,k),k);
Ai,k ← GEQRT (Ai,k);
for j = k + 1 to n− 1 do

Aeliminator(i,k),j ←
UNMQR(Aeliminator(i,k),j , Aeliminator(i,k),k;
Ai,j ← UNMQR(Ai,j , Ai,k;

Ai,k, Aeliminator(i,k),k ←
TTQRT (Ai,k, Aeliminator(i,k),k);
for j = k + 1 to n− 1 do

Ai,j , Aeliminator(i,k),j ←
TTMQR(Ai,j , Aeliminator(i,k),j , Ai,k);

a variant where we extend the search for pivots across the
diagonal domain (the Apply step is modified accordingly).
Working on the diagonal domain instead of the diagonal tile
increases the smallest singular value of the factored region
and therefore increases the likelihood of an LU step. Since
all tiles in the diagonal domain are local to a single node,
extending the search to the diagonal domain is done without
any inter-domain communication. The stability analysis of
Section III applies to both scenarios, the one where Akk is
factored in isolation, and the one where it is factored with
the help of the diagonal domain. In the experimental section,
we will use the variant which factors the diagonal domain.

B. QR step

If the decision to process a QR step is taken by the
criterion, the LU decomposition of the diagonal domain is
dropped, and the factorization of the panel starts over. This
step of the factorization is then processed using orthogonal
transformations. Every tile below the diagonal (matrix B
in Equation (1)) is zeroed out using a triangular tile, or
eliminator tile. In a QR step, the diagonal tile is factored
(with a GEQRF kernel) and used to eliminate all the other
tiles of the panel (with a TSQRT kernel) The trailing sub-
matrix is updated, respectively, with UNMQR and TSMQR
kernels. To further increase the degree of parallelism of
the algorithm, it is possible to use several eliminator tiles
inside a panel, typically one (or more) per domain. The

only condition is that concurrent elimination operations must
involve disjoint tile pairs (the unique eliminator of tile Aik
will be referred to as Aeliminator(i,k),k). Of course, in the
end, there must remain only one non-zero tile on the panel
diagonal, so that all eliminators except the diagonal tile must
be eliminated later on (with a TTQRT kernel on the panel
and TTMQR updates on the trailing submatrix), using a
reduction tree of arbitrary shape. This reduction tree will
involve inter-domain communications. In our hybrid LU-QR
algorithm, the QR step is processed following an instance of
the generic hierarchical QR factorization HQR [4] described
in Algorithms 3 and 4.

Each elimination elim(i, eliminator(i, k), k) consists of
two sub-steps: first in column k, tile (i, k) is zeroed out (or
killed) by tile (eliminator(i, k), k); and in each following
column j > k, tiles (i, j) and (eliminator(i, k), j) are
updated; all these updates are independent and can be
triggered as soon as the elimination is completed. The
orthogonal transformation elim(i, eliminator(i, k), k) uses
either a TTQRT kernel or a TSQRT kernel depending upon
whether the tile to eliminate is either triangular or square. In
the LU-QR Algorithm, any combination of reduction trees
of the HQR algorithm described in [4] is available. It is
then possible to use an intra-domain reduction tree to locally
eliminate many tiles without inter-domain communication.
A unique triangular tile is left on each node and then the
reductions across domains are performed following a second
level of reduction tree.

III. ROBUSTNESS CRITERIA

The decision to process an LU or a QR step is done
dynamically during the factorization, and constitutes the
heart of the algorithm. Indeed, the decision criteria has to
be able to detect a potentially “large” stability deterioration
(according to a threshold) due to an LU step before its
actual computation, in order to preventively switch to a
QR step. As explained in Section II, in our hybrid LU-
QR algorithm, the diagonal tile is factored using an LU
decomposition with partial pivoting. At the same time, some
data (like the norm of non local tiles belonging to other
domains) are collected and exchanged (using an all-reduce
algorithm) between all nodes hosting at least one tile of
the panel. Based upon this information, all nodes make the
decision to continue the LU factorization step or to drop
the LU decomposition of the diagonal tile and process a
full QR factorization step. The decision is broadcast to the
other nodes not involved in the panel factorization within
the next data communication. The decision process cost will
depend on the choice of the criterion and must not imply a
large computational overhead compared to the factorization
cost. A good criterion will detect only the “worst” steps and
will provide a good stability result with as few QR steps
as possible. In this section, we present three criteria, going

from the most elaborate (but also most costly) to the simplest
ones.

The stability of a step is determined by the growth of the
norm of the updated matrix. If a criterion determines the
potential for an unacceptable growth due to an LU step, then
a QR step is used. A QR step is stable as there is no growth
in the norm (2-norm) since it is a unitary transformation.
Each criterion depends on a threshold α that allows us to
tighten or loosen the stability requirement, and thus influence
the amount of LU steps that we can afford during the
factorization. The optimal choice of α is not known. In
Section V-C, we experiment with different choices of α for
each criterion.

A. Max criterion

LU factorization with partial pivoting chooses the largest
element of a column as the pivot element. Partial pivoting
is accepted as being numerically stable. However, pivoting
across nodes is expensive. To avoid this pivoting, we gen-
eralize the criteria to tiles and determine if the diagonal tile
is an acceptable pivot. A step is an LU step if

α× ‖(A(k)
kk)
−1‖−11 ≥ max

i>k
‖A(k)

i,k ‖1. (2)

For the analysis we do not make an assumption as to how the
diagonal tile is factored. We only assume that the diagonal
tile is factored in a stable way (LU with partial pivoting or
QR are acceptable). Note that, for the variant using pivoting
in the diagonal domain (see Section II-A), which is the
variant we experiment with in Section V, A(k)

kk represents
the diagonal tile after pivoting among tiles in the diagonal
domain.

To assess the growth of the norm of the updated matrix,
consider the update of the trailing sub-matrix. For all i, j > k
we have:

‖A(k+1)
i,j ‖1 = ‖A(k)

i,j −A
(k)
i,k (A

(k)
k,k)
−1A

(k)
k,j‖1

≤ ‖A(k)
i,j ‖1 + ‖A

(k)
i,k ‖1‖(A

(k)
k,k)
−1‖1‖A(k)

k,j‖1
≤ ‖A(k)

i,j ‖1 + α‖A(k)
k,j‖1

≤ (1 + α)max
(
‖A(k)

i,j ‖1, ‖A
(k)
k,j‖1

)
≤ (1 + α)max

i≥k

(
‖A(k)

i,j ‖1
)
.

The growth of any tile in the trailing sub-matrix is bounded
by 1+α times the largest tile in the same column. If every
step satisfies (2), then we have the following bound:

maxi,j,k ‖A(k)
ij ‖1

maxi,j ‖Ai,j‖1
≤ (1 + α)n−1.

The expression above is a growth factor on the norm of the
tiles. For α = 1, the growth factor of 2n−1 is an analogous
result to an LU factorization with partial pivoting (scalar
case) [6]. Finally, note that we can obtain this bound by

generalizing the standard example for partial pivoting. The
following matrix will match the bound above:

A =


α−1 0 0 1
−1 α−1 0 1
−1 −1 α−1 1
−1 −1 −1 1

 .

B. Sum criterion

A stricter criteria is to compare the diagonal tile to the
sum of the off-diagonal tiles:

α× ‖(A(k)
kk)
−1‖−11 ≥

∑
i>k

‖A(k)
i,k ‖1. (3)

Again, for the analysis, we only assume A−1kk factored in
a stable way. For α ≥ 1, this criterion (and the Max
criterion) is satisfied at every step if A is block diagonally
dominant [6]. That is, a general matrix A ∈ Rn×n is
block diagonally dominant by columns with respect to a
given partitioning A = (Aij) and a given norm ‖ · ‖ if:
∀j ∈ J1, nK, ‖A−1jj ‖−1 ≥

∑
i 6=j ‖Aij‖. Again, we need to

evaluate the growth of the norm of the updated trailing sub-
matrix. For all i, j > k, we have∑

i>k

‖A(k+1)
i,j ‖1 =

∑
i>k

‖A(k)
i,j − A

(k)
i,k (A

(k)
k,k)

−1
A

(k)
k,j‖1

≤
∑
i>k

‖A(k)
i,j ‖1

+ ‖A(k)
k,j‖1‖(A

(k)
k,k)

−1‖1
∑
i>k

‖A(k)
i,k‖1

≤
∑
i>k

‖A(k)
i,j ‖1 + α‖A(k)

k,j‖1.

Hence, the growth of the updated matrix can be bounded
in terms of an entire column rather than just an indi-
vidual tile. The only growth in the sum is due to the
norm of a single tile. For α = 1, the inequality becomes∑
i>k ‖A

(k+1)
i,j ‖1 ≤

∑
i≥k ‖A

(k)
i,j ‖1. If every step of the

algorithm satisfies (3) (with α = 1), then by induction we
have:

∑
i>k ‖A

(k+1)
i,j ‖1 ≤

∑
i≥1 ‖Ai,j‖1,, for all i, j, k. This

leads to the following bound:

maxi,j,k ‖A(k)
ij ‖1

maxi,j ‖Ai,j‖1
≤ n.

From this we see that the criteria eliminates the potential
for exponential growth due to the LU steps. Note that for a
diagonally dominant matrix, the bound on the growth factor
can be reduced to 2 [6].

C. MUMPS criterion

In LU decomposition with partial pivoting, the largest
element of the column is use as the pivot. This method is
stable experimentally, but the seeking of the maximum and
the pivoting requires a lot of communications in distributed
memory. Thus in an LU step of the LU-QR Algorithm, the
LU decomposition with partial pivoting is limited to the local
tiles of the panel (i.e., to the diagonal domain). The idea
behind the MUMPS criterion is to estimate the quality of
the pivot found locally compared to the rest of the column.

The MUMPS criterion is one of the strategies available in
MUMPS, although it is for symmetric indefinite matrices
(LDLT) [7].

At step k of the LU-QR Algorithm, let L(k)U (k) be the LU
decomposition of the diagonal domain and A(k)

ij be the value
of the tile Aij at the beginning of step k. Let local maxk(j)
be the largest element of the column j of the panel in the
diagonal domain, away maxk(j) be the largest element of
the column j of the panel off the diagonal domain, and
pivotk be the list of pivots used in the LU decomposition
of the diagonal domain:

local maxk(j) = max
tiles Ai,k on the
diagonal domain

max
l
|(Ai,k)l,j |,

away maxk(j) = max
tiles Ai,k off the
diagonal domain

max
l
|(Ai,k)l,j |,

pivotk(j) = |U (k)
j,j |.

pivotk(j) represents the largest local element of the column
j at step j of the LU decomposition with partial pivoting
on the diagonal domain. Thus, we can express the growth
factor of the largest local element of the column j at step
j as: growth factork(j) = pivotk(j)/local maxk(j).
The idea behind the MUMPS criterion is to estimate
if the largest element outside the local domain would
have grown the same way. Thus, we can define a vector
estimate maxk initialized to away maxk and updated
for each step i of the LU decomposition with partial
pivoting like estimate maxk(j) ← estimate maxk(j) ×
growth factork(i). We consider that the LU decomposi-
tion with partial pivoting of the diagonal domain can be used
to eliminate the rest of the panel if and only if all pivots are
larger than the estimated maximum of the column outside
the diagonal domain times a threshold α. Thus, the MUMPS
criterion (as we implemented it) decides that step k of the
LU-QR Algorithm will be an LU step if and only if:

∀j, α× pivotk(j) ≥ estimate maxk(j). (4)

D. Complexity

All criteria require the reduction of information of the
off-diagonal tiles to the diagonal tile. Criteria (2) and (3)
require the norm of each tile to be calculated locally (our
implementation uses the 1-norm) and then reduced to the
diagonal tile. Both criteria also require computing ‖A−1kk ‖.
Since the LU factorization of the diagonal tile is computed,
the norm can be approximated using the L and U factors
by an iterative method in O(n2b) operations. The overall
complexity for both criteria is O(n × n2b). Criterion (4)
requires the maximum of each column be calculated locally
and then reduced to the diagonal tile. The complexity of the
MUMPS criterion is also O(n× n2b) comparisons.

The Sum criterion is the strictest of the three criteria. It
also provides the best stability with linear growth in the

Figure 1: Dataflow of one step of the algorithm.

norm of the tiles in the worst case. The other two criteria
have similar worst case bounds. The growth factor for both
criteria are bound by the growth factor of partial (threshold)
pivoting. The Max criterion has a bound for the growth
factor on the norm of the tiles that is analogous to partial
pivoting. The MUMPS criteria does not operate at the tile
level, but rather on scalars. If the estimated growth factor
computed by the criteria is a good estimate, then the growth
factor is no worse than partial (threshold) pivoting.

IV. IMPLEMENTATION

As discussed in section I, we have implemented the LU-
QR Algorithm on top of the PARSEC runtime. This choice
implied major difficulties due to the parameterized task
graph representation exploited by the PARSEC runtime.
This representation being static, a solution had to be de-
veloped to allow for dynamism in the graph traversal. To
solve this issue, a layer of selection tasks has been inserted
between each elimination step of the algorithm. These tasks
are executed only once a control flow has been sent to them
after the criterion selection. Thus, they delay the decision to
send the data to the next elimination step until a choice has
been made, in order to guarantee that data follow the correct
path. These are the Propagate tasks on Figure 1. Note that
these tasks, as well as Backup Panel tasks, can receive the
same data from two different paths. In the PARSEC runtime,
tasks are created only when one of their dependencies is
solved, then by graph construction they are enabled only
when the previous elimination step has already started, hence
they will receive their data only from the correct path.

Figure 1 describes the connection between the different
stages of one elimination step of the algorithm. These stages
are described below:
• BACKUP PANEL: This is a set of tasks that collect
the tiles of the panel from the previous step. Since an
LU factorization will be performed in-place for criterion
computation, a backup of the tiles on the diagonal domain
is created and directly sent to the Propagate tasks in case
a QR elimination step is needed. All tiles belonging to the

panel are forwarded to the LU On Panel tasks.
• LU ON PANEL: Once the backup is done, the criterion
is computed. The first node computes the U matrix related
to this elimination step. This could be done through LU
factorization with or without pivoting. We decided to exploit
the multi-threaded recursive-LU kernel from the PLASMA
library to enlarge the pivot search space while keeping
good efficiency [8]. All other nodes compute information
required for the criterion (see section III). Then, an all-
reduce operation is performed to exchange the information,
so that everyone can take and store the decision in a
local array. Once the decision is known, data on panel are
forwarded to the appropriate Propagate tasks and a control
flow triggers all to release the correct path in the dataflow.
• PROPAGATE: These tasks, one per tile, receive the decision
from the previous stage through a control flow, and are
responsible for forwarding the data to the computational
tasks of the selected factorization. The tasks belonging to the
panel (assigned to the first nodes) have to restore the data
back to their previous state if QR elimination is chosen. In
all cases, the backup is destroyed upon exit of these tasks.

We are now ready to describe each step:

a) LU STEP: If the numerical criterion is met by the
panel computation, the update step is performed. On the
nodes with the diagonal row, the update is made according
to the factorization used on the panel. Here, a swap is
performed with all tiles of the local panel, and then a
triangular solve is applied to the first row. On all other
nodes, a block LU algorithm is used to performed the update.
This means that the panel is updated with TRSM tasks,
and the trailing sub-matrix is updated with GEMM tasks.
This avoids the row pivoting between the nodes usually
performed by the classical LU factorization algorithm with
partial pivoting, or by tournament pivoting algorithms [9].

b) QR STEP: If the numerical criterion is not met, a
QR factorization has to be performed. Many solutions could
be used for this elimination step. We chose to exploit the
HQR method implementation presented in [4]. This allowed

us to experiment with different kinds of reduction trees, so
as to find the most adapted solution to our problem. Our
default tree (which we use in all of our experiments) is a
hierarchical tree made of GREEDY reduction trees inside
nodes and a FIBONACCI reduction tree between the nodes.
The FIBONACCI tree between nodes has been chosen for
its short critical path and its good pipelining of consecutive
trees, in case some QR steps are performed in sequence. The
GREEDY reduction tree is favored within a node. A two-level
hierarchical approach is natural when considering multicore
parallel distributed architectures. (See [4] for more details
on the reduction trees).

To implement the LU-QR Algorithm within the PARSEC
framework, two extensions had to be implemented within
the runtime. The first extension allows the programmer
to generate data during the execution with the OUTPUT
keywords. This data is then inserted to the tracking system
of the runtime to follow its path in the dataflow. This has
been used to generate the backup on the fly, and to limit
the memory peak of the algorithm. The second extension is
for the end detection of the algorithm. Due to its distributed
nature, PARSEC goes over all the domain space of each type
of task and uses a predicate, namely the owner computes
rule, to decide if a task is local or not. Local tasks are
counted and the end of the algorithm is detected when all
of them have been executed. Due to the dynamism in the
LU-QR Algorithm, the size of the domain space is larger
than the number of tasks that will be really executed. Thus,
a function to dynamically increase/decrease the number of
local tasks has been added, so that the Propagate task of each
node updates the local counter according to the elimination
step chosen.

V. EXPERIMENTS

The purpose of this section is to present numerical ex-
periments for the hybrid LU-QR Algorithm, and to highlight
the trade-offs between stability and performance that can be
achieved by tuning the threshold α in the robustness criterion
(see Section III).

A. Experimental framework

We used Dancer, a parallel machine hosted at the In-
novative Computing Laboratory (ICL) in Knoxville, to run
the experiments. This cluster has 16 multi-core nodes, each
equipped with 8 cores, and an Infiniband 10G intercon-
nection network. The nodes feature two Intel Westmere-EP
E5606 CPUs at 2.13GHz. The system is running the Linux
64bit operating system, version 3.7.2-x86 64. The software
was compiled with the Intel Compiler Suite 2013.3.163.
BLAS kernels were provided by the MKL library and
OpenMPI 1.4.3 has been used for the MPI communications
by the PARSEC runtime. Each computational thread is
bound to a single core using the HwLoc 1.7.1 library. If
not mentioned otherwise, we will use all 16 nodes and the

data will be distributed according to a 4-by-4 2D-block-
cyclic distribution. The theoretical peak performance of the
16 nodes is 1091 GFlop/s.

For each experiment, we consider a square tiled-matrix
A of size N -by-N , where N = n × nb. The tile size nb
has been fixed to 240 for the whole experiment set, because
this value was found to achieve good performance for both
LU and QR steps. We evaluate the backward stability by
computing the HPL3 accuracy test of the High-Performance
Linpack benchmark:

HPL3 =
‖Ax− b‖∞

‖A‖∞‖x‖∞ × ε×N
,

where x is the computed solution and ε is the machine
precision. Each test is run with double precision arithmetic.
For performance, we point out that the number of floating
point operations executed by the hybrid algorithm depends
on the number of LU and QR steps performed during the
factorization. Thus, for a fair comparison, we assess the
efficiency by reporting the normalized GFlop/s performance
computed as

GFlop/s =
2
3N

3

EXECUTION TIME
,

where 2
3N

3 is the number of operations for LU with partial
pivoting and EXECUTION TIME is the execution time of the
algorithm. With this formula, QR factorization will only
achieve half of the performance due to the 4

3N
3 operations

of the algorithm.

B. Results for random matrices
We start with the list of the algorithms used for compar-

ison with the LU-QR Algorithm. For fairness, they are all
implemented within the PaRSEC framework:
• LU NoPiv, which performs pivoting only inside the

diagonal tile but no pivoting across tiles (known to be
both efficient and unstable)

• LU IncPiv, which performs incremental pairwise piv-
oting across all tiles in the elimination panel [1], [2]
(still efficient but not stable either)

• Several instances of the hybrid LU-QR Algorithm, for
different values of the robustness parameter α. Recall
that the algorithm performs pivoting only across the
diagonal domain, hence involving no remote commu-
nication nor synchronization.

• HQR, the Hierarchical QR factorization [4], with the
same configuration as in the QR steps of the LU-
QR Algorithm: GREEDY reduction trees inside nodes
and FIBONACCI reduction trees between the nodes.

For reference, we also include a comparison with PDGE-
QRF: this is the LUPP algorithm (LU with partial pivoting
across all tiles of the elimination panel) from the reference
ScaLAPACK implementation.Figure 2 summarizes all re-
sults for random matrices. It is organized as follows: each
row corresponds to one criterion. Within a row:

Figure 2: Stability, performance, and percentage of LU steps obtained by the three criteria for random matrices on the Dancer
platform (4x4 grid).

• the first column shows the relative stability (ratio of
HPL3 value divided by HPL3 value for LUPP)

• the second column shows the GFlop/s performance
• the third column shows the percentage of LU steps

during execution
Results are average values obtained on a set of 100 random
matrices (we observe a very small standard deviation, less
than 2%).

For each criterion, we experimentally chose a set of values
of α that provides a representative range of ratios for the
number of LU and QR steps. As explained in Section III,
for each criterion, the smaller the α is, the tighter the
stability requirement. Thus, the numerical criterion is met
less frequently and the hybrid algorithm processes fewer
LU steps. A current limitation of our approach is that we
do not know how to auto-tune the best range of values for
α, which seems to depend heavily upon matrix size and
available degree of parallelism. In addition, the range of
useful α values is quite different for each criterion.

For random matrices, we observe that the stability of
LU NoPiv and LU IncPiv is not satisfactory. Also, for each
criterion, small values of α result in better stability, to the
detriment of performance. For α = 0, LU-QR Algorithm
processes only QR steps, which leads to the exact same
stability as the HQR Algorithm and almost the same per-
formance results. The difference between the performance
of LU-QR Algorithm with α = 0 and HQR comes from
the cost of the decision making process steps (saving the

panel, computing the LU factorization with partial pivoting
on the diagonal domain, computing the choice, and restoring
the panel). Figure 2 shows that the overhead due to the
decision making process is approximately equal to 10%
for the three criteria. This overhead, computed when QR
eliminations are performed at each step, is primarily due to
the backup/restore steps added to the critical path when QR
is chosen. Performance impact of the criterion computation
itself is negligible, as one can see by comparing performance
of the random criterion to the MUMPS and Max criteria.

For α = ∞, the LU-QR Algorithm processes only LU
steps, with a stability slightly inferior to that of LUPP.
When the matrix size increases, the relative stability results
of the LU-QR Algorithm with α = ∞ tends to 1, which
means (somewhat unexpectedly) that, on random matrices,
processing an LU factorization with partial pivoting on the
diagonal domain followed by a flat tree elimination of the
rest of the panel is almost as stable as an LU factorization
with partial pivoting on the whole panel.

C. Results for special matrices

We test the hybrid LU-QR Algorithm on a collection
of matrices that includes several pathological matrices on
which LUPP fails because of large growth factors. Figure 3
provides the relative stability (ratio of HPL3 divided by
HPL3 for LUPP) obtained by running the hybrid LU-
QR Algorithm with 5 random matrices (for comparison)
and a set of special matrices from the Higham’s Matrix

10−15

10−10

10−5

1

105

1010

1015

1020

R
e
la

ti
v
e
 H

P
L
3
 (

c
o
m

p
a
re

d
 t

o
 L

U
P

P
)

R
and. m

atrices
Special m

atrices

LU NoPiv

R
and. m

atrices
Special m

atrices

LUQR
Random
choices

R
and. m

atrices
Special m

atrices

LUQR
Max

criterion

R
and. m

atrices
Special m

atrices

LUQR
MUMPS
criterion

R
and. m

atrices
Special m

atrices

HQR

Figure 3: Stability on special matrices.

Computation Toolbox [6] (see [5] for details). Matrix size is
set to N = 40, 000, and experiments were run on a 16-by-1
process grid. The parameter α is set to 50 for the random
criterion, 6, 000 for the Max criterion, and 2.1 for the
MUMPS criterion (results for the Sum criterion are the same
as for Max). In addition to the Max and MUMPS criteria,
we report results obtained with random choices between LU
and QR at each step of the algorithm: this is to assess the
usefulness of the criteria. Figure 3 considers LU NoPiv,
HQR and the LU-QR Algorithm. The first observation is
that using random choices now leads to numerical instability.
The Max criterion provides a good stability ratio on every
tested matrix (up to 58 for the RIS matrix and down to 0.03
for the Invhess matrix). The MUMPS criterion also gives
modest growth factor for the whole experiment set except
for the Wilkinson and Foster matrices, for which it fails to
detect some “bad” steps.

We also experimented with the Fiedler matrix from the
Higham’s Matrix Computation Toolbox [6]. We observed
that LU NoPiv and LUPP failed (due to small values rounded
up to 0 and then illegally used in a division), while the Max
and the MUMPS criteria provide HPL3 values (≈ 5.16 ×
10−09 and ≈ 2.59 × 10−09) comparable to that of HQR
(≈ 5.56 × 10−09). This proves that our criteria can detect
and handle pathological cases for which the generic LUPP
algorithm fails.

D. Assessment of the three criteria
With respect to stability, while the three criteria behave

similarly on random matrices, we observe different behav-
iors for special matrices. The MUMPS criterion provides
good results for most of the tested matrices but not for all.
If stability is the key concern, one may prefer to use the
Max criterion (or the Sum criterion), which performs well
for all special matrices (which means that the upper bound
on the growth is quite pessimistic).

With respect to performance, we observe very compa-
rable results, which means that the overhead induced by
computing the criterion at each step is of the same order
of magnitude for all criteria.

The overall conclusion is that all criteria bring significant
improvement over LUPP in terms of stability, and over HQR
in terms of performance. Tuning the value of the robustness
parameter α enables the exploration of a wide range of
stability/performance trade-offs.

VI. RELATED WORK

State-of-the-art QR factorizations use multiple eliminators
per panel, in order to dramatically reduce the critical-path
length of the algorithm. These algorithms are uncondition-
ally stable, and their parallelization has been fairly well
studied on shared memory systems [1], [2], [10] and on
parallel distributed systems [4].

The idea of mixing Gaussian transformations and or-
thogonal transformations has been considered once before.
Irony and Toledo [11] present an algorithm for reducing
a banded symmetric indefinite matrix to diagonal form.
The algorithm uses symmetric Gaussian transformations and
Givens rotations to maintain the banded symmetric structure
and maintain similar stability to partial symmetric pivoting.

The reason for using LU kernels instead of QR kernels is
performance: (i) LU performs half the number of operations
of QR; (ii) LU kernels relies on GEMM kernels which
are very efficient while QR kernels are more complex and
much less tuned, hence not that efficient; and (iii) the LU
update is much more parallel than the QR update. So all
in all, LU is much faster than QR (as observed in the
performance results of Section V). Because of the large
number of communications and synchronizations induced by
pivoting in the reference LUPP algorithm, communication-
avoiding variants of LUPP have been introduced [12], but
they have proven much more challenging to design because
of stability issues. We review several approaches:
• LUPP: LU with partial pivoting is not a communication-
avoiding scheme and its performance in a parallel distributed
environment is low (see Section V). However, the LUPP
algorithm is stable in practice, and we use it as a reference
for stability.
• LU NoPiv: The most basic communication-avoiding LU
algorithm is LU NoPiv. This algorithm is stable for block
diagonal dominant matrices [6], but breaks down if it en-
counters a nearly singular diagonal tile, or loses stability if
it encounters a diagonal tile whose smallest singular value
is too small. Baboulin et al. [13] propose to apply a random
transformation to the initial matrix, in order to use LU NoPiv
while maintaining stability. This approach gives about the
same performance as LU NoPiv, since preprocessing and
postprocessing costs are negligible. However, for any matrix
which is rendered stable by this approach (i.e, LU NoPiv is
stable), there exists a matrix which is rendered not stable.

But in practice, this proves to be a valid approach.
• LU IncPiv: LU IncPiv is another communication-avoiding
LU algorithm [1], [2]. Incremental pivoting is also called
pairwise pivoting. The stability of the algorithm [1] is not
sufficient and degrades as the number of tiles in the matrix
increases (see our experimental results on random matrices).
The method also suffers some of the same performance
degradation of QR factorizations with multiple eliminators
per panel, namely low-performing kernels, and some depen-
dencies in the update phase.
• CALU: CALU [9] is a communication-avoiding LU. It
uses tournament pivoting which has been proven to be
stable in practice [9]. CALU shares the (good) properties
of one of our LU steps: (i) low number of operations; (ii)
use of efficient GEMM kernels; and (iii) embarrassingly
parallel update. The advantage of CALU over our algorithm
is essentially that it performs only LU steps, while our
algorithm might need to perform some (more expensive)
QR steps. The disadvantage is that, at each step, CALU
needs to perform global pivoting on the whole panel, which
then needs to be reported during the update phase to the
whole trailing submatrix. There is no publicly available
implementation of parallel distributed CALU, and it was not
possible to compare stability or performance.

VII. CONCLUSION

Linear algebra software designers have been struggling
for years to improve the parallel efficiency of LUPP (LU
with partial pivoting), the de-facto choice method for solv-
ing dense systems. The search for good pivots throughout
the elimination panel is the key for stability (and indeed
both NoPiv and IncPiv fail to provide acceptable stability),
but dramatically decreases the overall performance of the
factorization.

Communication-avoiding and critical-path reducing algo-
rithms prove very relevant on today’s architectures. In our
experiments, our HQR factorization [4] based of QR kernels
obtains similar performance as ScaLAPACK LUPP, while
performing 2x more operations, using slower sequential
kernels, and being undermined by a less parallel update
phase. In this paper, stemming from the key observation
that LU steps and QR steps can be mixed during a fac-
torization, we present the LU-QR Algorithm whose goal
is to accelerate the HQR algorithm by introducing some
LU steps whenever these do not compromise stability. The
hybrid algorithm represents dramatic progress in a long-
standing research problem. By restricting to pivoting inside
the diagonal domain, i.e., locally, but by doing so only when
the robustness criterion forecasts that it is safe (and going
to a QR step otherwise), we improve performance while
guaranteeing stability. And we provide a continuous range
of trade-offs between LU NoPiv (efficient but only stable
for diagonally-dominant matrices) and QR (always stable
but twice as costly and with less performance).

This work opens several research directions. There are
many variants and extensions of the hybrid algorithm that
can be envisioned (some are described in [5]). Another goal
would be to derive LU algorithms with several eliminators
per panel (just as for HQR) to decrease the critical-path
length, provided the availability of a reliable robustness test
to ensure stability.

REFERENCES

[1] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class
of parallel tiled linear algebra algorithms for multicore archi-
tectures,” Parallel Computing, vol. 35, pp. 38–53, 2009.

[2] G. Quintana-Ortı́, E. S. Quintana-Ortı́, R. A. van de
Geijn, F. G. Van Zee, and E. Chan, “Programming ma-
trix algorithms-by-blocks for thread-level parallelism,” ACM
Trans. Math. Softw., vol. 36, no. 3, pp. 1–26, 2009.

[3] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra, “DAGuE: A generic
distributed DAG engine for high performance computing,”
Parallel Computing, vol. 38, no. 1, pp. 37–51, 2012.

[4] J. Dongarra, M. Faverge, T. Hérault, M. Jacquelin, J. Langou,
and Y. Robert, “Hierarchical QR factorization algorithms for
multi-core cluster systems,” Parallel Computing, vol. 39, no.
4-5, pp. 212–232, 2013.

[5] M. Faverge, J. Herrmann, J. Langou, B. Lowery, Y. Robert,
and J. Dongarra, “Designing LU-QR hybrid solvers for per-
formance and stability,” LAPACK Working Note 282, October
2013.

[6] N. J. Higham, Accuracy and Stability of Numerical Algo-
rithms. SIAM Press, 2002.

[7] I. S. Duff and S. Pralet, “Strategies for scaling and pivoting
for sparse symmetric indefinite problems,” SIAM J. Matrix
Anal. Appl., vol. 27, no. 2, pp. 313–340, 2005.

[8] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek, “Achiev-
ing numerical accuracy and high performance using recursive
tile lu factorization with partial pivoting,” Concurrency and
Computation: Practice and Experience, 2013, available on-
line.

[9] L. Grigori, J. W. Demmel, and H. Xiang, “CALU: a commu-
nication optimal LU factorization algorithm,” SIAM Journal
on Matrix Analysis and Applications, vol. 32, no. 4, pp. 1317–
1350, 2011.

[10] H. Bouwmeester, M. Jacquelin, J. Langou, and Y. Robert,
“Tiled QR factorization algorithms,” in Proc. ACM/IEEE
SC11 Conference. ACM Press, 2011.

[11] D. Irony and S. Toledo, “The snap-back pivoting method
for symmetric banded indefinite matrices,” SIAM journal on
matrix analysis and applications, vol. 28, no. 2, pp. 398–424,
2006.

[12] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
“Communication-optimal parallel and sequential QR and LU
factorizations,” SIAM J. Scientific Computing, vol. 34, no. 1,
pp. A206–A239, 2012.

[13] M. Baboulin, J. J. Dongarra, J. Herrmann, and S. Tomov,
“Accelerating linear system solutions using randomization
techniques,” ACM Trans. Mathematical Software, vol. 39,
no. 2, pp. 8:1–8:13, 2013.

