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Abstract—Finding a good partition of a computational
directed acyclic graph associated with an algorithm can help
find an execution pattern improving data locality, conduct
an analysis of data movement, and expose parallel steps. The
partition is required to be acyclic, i.e., the inter-part edges
between the vertices from different parts should preserve an
acyclic dependency structure among the parts. In this work,
we adopt the multilevel approach with coarsening, initial
partitioning, and refinement phases for acyclic partitioning of
directed acyclic graphs and develop a direct k-way partitioning
scheme. To the best of our knowledge, no such scheme exists
in the literature. To ensure the acyclicity of the partition
at all times, we propose novel and efficient coarsening and
refinement heuristics. The quality of the computed acyclic
partitions is assessed by computing the edge cut, the total
volume of communication between the parts, and the critical
path latencies. We use the solution returned by well-known
undirected graph partitioners as a baseline to evaluate our
acyclic partitioner, knowing that the space of solution is more
restricted in our problem. The experiments are run on large
graphs arising from linear algebra applications.

Keywords-directed graph; acyclic partitioning; multilevel
partitioning;

I. INTRODUCTION

We investigate the problem of partitioning directed acyclic

graphs for task mapping in parallel systems to improve the

parallel execution time. To the best of our knowledge, there

has been no work on directed acyclic graph partitioning

for this purpose. When the underlying model is a directed

graph, usually it is converted to an undirected graph, and a

traditional, undirected graph partitioning approach is used.

Load balancing and mapping is only one part of the par-

allel execution. A full execution needs a complete schedule

that obeys the dependencies [1]. One can still use undirected

graph partitioning to reduce the communication among

processors, however, overlooking dependencies may force to

create schedules for which the critical execution path creates

a cut among the parts, hence extra communication latency.

Here we show that a special class of partitioning, namely

acyclic partitioning is needed to more accurately solve the

problem of reducing the parallel execution time. Informally,

an acyclic partitioning is a partitioning of vertices into

parts where there are no cycles among parts, when the

inter-part edges are considered (formal definition will be

given in the next section). There are some heuristics for

this purpose. We propose the first of its class, a multilevel

directed acyclic partitioning method.

The directed acyclic graph (DAG) partitioning problem

appears in many applications. At the beginning, we were

motivated by the characterization of the parallel data move-

ment complexity and dynamic analysis of the data locality

potential [2], [3]. As the latency and energy gap increases

among the hierarchical layers of the modern computers,

it is crucial to understand the data movement complexity

of an algorithm, instead of its time complexity. However,

this new form of complexity is not well characterized and

harder to measure: it depends on code transformations

and the architectural parameters such as the fast memory

(registers/caches) capacity. A thorough understanding is

important to reveal the possible performance improvements

beyond the current compiler optimizations, and to select

the most suitable implementation for a specific architecture.

Closer to our objective of optimizing the parallel execution

time, another formulation of the DAG partitioning problem

arises in exposing parallelism in automatic differentiation [4,

Ch.9], and in general, in the computation of the Newton

step for solving nonlinear systems [5]. Other important

applications of the DAG partitioning problem include (i)

fusing loops for improving temporal locality, and enabling

streaming and array contractions in runtime systems [6],

such as Bohrium [7]; (ii) analysis of cache efficient

execution of streaming applications on uniprocessors [8].

Let us consider a toy example which maps six atomic

tasks to two processors. Figure 1a displays the directed

graph with six vertices and five edges corresponding to task-

dependencies; an edge (u, v) implies that v depends on u.

If the edge orientations are removed and the computation

is modeled with an undirected graph, the best balanced

partition with a 3/3 vertex split has two edges in the cut (all

other balanced partitions have three or more edges in the cut)



as shown in Fig. 1b. However, when the edge orientations

are considered, the two parts formed by the best undirected

partition become inter-dependent in a cyclic way as shown

in Fig. 1c. Hence, when they are mapped to different proces-

sors, either on the same node or distributed nodes, the com-

munication uses L3 cache instead of L1 and this cyclic de-

pendency will increase the execution time due to the latency

incurred by the extra communication among the processors.

All three-vertex paths (i.e., (s, u, x), (s, u, y), (s, u, t), and

(s, v, t)) in this toy example are the code’s critical paths. Let

us investigate this using the L1 and L3 cache latencies of

i7-4770 CPU1 which are 4 and 36 cycles, respectively. The

execution is penalized by these latencies due to the intra-

and inter-part edges. For the performance evaluation, each

task is assumed to be performed in a single cycle. Hence, for

the best undirected partition, executing the (s, u, t) path will

incur a latency of 75. Yet, for the acyclic partition in Fig. 1d

even though the edge cut is three, the total latency of this

path (and also (s, v, t) and (s, u, y) paths too) will be 43.

(a) A toy graph (b) Undirected par-
titioning

(c) Undirected par-
titioning with di-
rected edges

(d) Acyclic parti-
tioning of the di-
rected graph

Figure 1: a) A toy example with six tasks and six dependencies, b)
a valid 2-way partitioning of an undirected graph, c) a non-acyclic
partitioning when edges are oriented, d) an acyclic partitioning of
the same directed graph.

The rest of the paper is organized as follows: Section II

introduces the notation and background on directed acyclic

graph partitioning and Section III briefly surveys the

existing literature. The proposed multilevel partitioning

heuristics are proposed in Section IV. Section V presents

the experimental results and Section VI concludes the paper.

II. PRELIMINARIES AND NOTATION

A directed graph G(V,E) contains a set of vertices V
and a set of directed edges E among the vertices. An edge

sequence ((u1, v1) · (u2, v2) · (u3, v3) · · · (uℓ, vℓ)) forms

a path of length ℓ if it connects a sequence of vertices

(u1, v1 = u2, . . . , vℓ−1 = uℓ, vℓ). If all the connected

vertices are distinct the path is called simple. Let u ❀ v

1http://www.7-cpu.com/cpu/Haswell.html

denote a simple path that starts from u and ends at v. Among

all the u ❀ v paths, the one with the smallest ℓ is called

the shortest one. A path ((u1, v1) · (u2, v2) · · · (uℓ, vℓ))
forms a (simple) cycle if all vi for 1 ≤ i ≤ ℓ are distinct

and u1 = vℓ. A directed acyclic graph, DAG in short, is a

directed graph with no cycles.

The path u ❀ v represents a dependency of v to u.

We say that the edge (u, v) is redundant if there exists

another u ❀ v path in the graph. That is when we remove

a redundant (u, v) edge, u remains to be connected to v,

and hence, the dependency information is preserved. We

use Pred[v] = {u|(u, v) ∈ E} to represent the (immediate)

predecessors of a vertex v, and Succ[v] = {u|(v, u) ∈ E}
to represent the (immediate) successors of v. Every vertex

u has a weight denoted by wu and every edge (u, v) ∈ E
has a weight denoted by cu,v .

A k-way partitioning of a graph G = (V,E) divides

V into k disjoint subsets {V1, . . . , Vk}. The weight of a

part Vi for 1 ≤ i ≤ k is equal to
∑

u∈Vi
wu which is the

total vertex weight in that part. Given a partition, an edge

is called a cut edge if its endpoints are in different parts.

In practice, a constraint, e.g., balance, lower and/or upper

bound, on the part weights accompanies the problem with an

objective function based on the weights of the cut edges. We

are interested in acyclic partitions, which are defined below.

Definition 2.1 (Acyclic k-way partition): A partition

{V1, . . . , Vk} of G = (V,E) is called an acyclic k-way

partition if two paths u ❀ v and v′ ❀ u′ do not co-exist

for u, u′ ∈ Vi, v, v
′ ∈ Vj , and 1 ≤ i 6= j ≤ k.

There is a related definition in the literature [3], which

is called convex partition. A partition is convex if for any

pair of vertices u and v in the same part, all vertices in any

path from u ❀ v are also in the same part.

Figure 2 shows that the definitions of an acyclic partition

and a convex partition are not equivalent. Indeed, for the

toy graph in Figure 2a, there are three possible balanced

partition shown in Figs. 2b, 2c, and 2d. They are all convex

but only that in Fig. 2d is acyclic.

(a) Graph (b) Cyclic &
convex

(c) Cyclic &
convex

(d) Acyclic &
convex

Figure 2: A toy example (left), two cyclic and convex partition-
ings, and an acyclic partitioning (right).

When there is an upper bound on the part weights and

another upper bound on the sum of the cut edge weights, it

is shown that deciding on the existence of a k-way acyclic

partition is NP-complete [9]. Several other objectives

can be taken into account, such as the volume of data

communication (by counting only the number of outputs



that have to be sent from a partition set to another), or the

longest path in the partitioned graph. Our heuristics will be

evaluated with these three metrics in Section V. The formal

problem treated in this paper is defined as follows.

Definition 2.2 (DAG partitioning problem): Given a

DAG G, and an upper bound B, find an acyclic k-way

partition P = {V1, . . . , Vk} such that the weight of each

part is no larger than B and the edge cut is minimized.

III. RELATED WORK

Fauzia et al. [3] propose a heuristic for the acyclic par-

titioning problem to optimize data locality when analyzing

DAGs. To create partitions, the heuristic categorizes a vertex

as ready to be assigned to a partition when all of the vertices

it depends on have already been assigned. Vertices are as-

signed to the current partition set until the maximum number

of vertices that would be active during the computation of

the partition set reaches a specified cache size. This implies

that partition sizes can be larger than the size of the cache.

This differs from our problem as we limit the size of each

partition to the cache size. We implement this heuristic

with the same limit on part sizes to address our acyclic

partitioning problem and use this heuristic in Section V-B.

Kernighan [10] provided an algorithm to find a minimum

edge-cut partition of the vertices of a graph into subsets

of size greater than a lower bound and inferior to an upper

bound. The partition needs to use a fixed vertex sequence

that cannot be changed. Indeed, Kernighan’s algorithm takes

a topological order of the vertices of the graph as an input

and partitions the vertices such that every vertex in a subset

are adjacent in the given topological order. This procedure

is optimal for a given, fixed topological order and has a

running time proportional to the number of edges in the

graph, if the part weights are taken as constant. Although,

Kernighan’s algorithm guarantees that the upper bound and

the lower bound on the weights of the parts are met, there

is no guarantee on the final number of parts. In order to

use this algorithm, as a heuristic, we modify it to obtain the

desired number of parts. This modified version is used in

our multilevel heuristic (Section IV-B) where a topological

order of the vertices is computed and used as a total order.

Cong et al. [11] describe a Fiduccia-Mattheyses (FM)-

based acyclic multi-way partitioning algorithm for boolean

networks. They generate an initial acyclic partitioning by

splitting the list of the vertices (in a topological order) from

left to right into K parts such that the weight of each part

does not violate the bound. The quality of the results is then

improved with a k-way variant of the FM heuristic [12]

taking the acyclicity constraint into account. A detailed de-

scription of this heuristic is given in Section IV-C, since we

use it as a refinement technique in our multilevel partitioner.

Other related work on acyclic partitioning of directed

graphs include (i) an exact, branch-and-bound algorithm

by Nossack and Pesch [13] which works on the integer

programming formulation of the acyclic partitioning

problem. This solution is, of course, too costly to be used in

practice; (ii) Wong et.al. [14] present an acyclic multi-way

partitioning heuristic with a process similar to the multilevel

scheme where they use clustering and adopt Cong et al.’s

approach later.

IV. DIRECTED MULTILEVEL GRAPH PARTITIONING

We propose a new multilevel tool for obtaining acyclic

partitions of directed graphs. Multilevel frameworks

became de-facto standard for solving graph and hypergraph

partitioning problems efficiently, hence used by almost

all, if not all, of the current state-of-the-art partitioning

tools [15], [16], [17]. Similar to the other multilevel graph

frameworks, our algorithm has three phases, a coarsening

phase aiming to reduce the number of vertices by clustering

them, the initial partitioning of the coarsened graph and

the uncoarsening phase where the initial solution to the

finer graphs is projected and refined iteratively until a

solution for the original graph is obtained.

A. Coarsening

In this phase, we obtain smaller acyclic graphs by

combining the vertices until a minimum vertex count is

reached or the reduction in the number of vertices is

lower than a threshold. At each level ℓ, we start with a

finer acyclic graph Gℓ, we compute a valid matching Mℓ

ensuring the acyclicity, and obtain a coarser acyclic graph

Gℓ+1. However, unlike in the undirected model, not all the

vertices can be safely combined: consider a DAG with three

vertices a, b, c and three edges (a, b), (b, c), (a, c). Here, the

vertices a and c cannot be combined, since that would create

a cycle. We say that an edge is contractible (its end points

are matchable), if unifying the two endpoints does not create

a cycle. To maintain acyclicity, we propose a novel and

efficient mechanism to check if an edge is contractible or not

based on a precomputed topological ordering of the vertices.

Definition 4.1 (Matching): A matching of a DAG

G = (V,E) is a subset of edges without common vertices.

Definition 4.2 (Coarse Graph): Given a DAG G =
(V,E) and a matching M of G, we let G|M denote the

coarse graph created by contracting the edges of M .

Definition 4.3 (Feasible Matching): A feasible match-

ing M of a DAG G = (V,E) is a matching such that G|M

is acyclic.

Theorem 1: Given a DAG G = (V,E) with u, v ∈ V and

(u, v) ∈ E. Then G|{(u,v)} is acyclic if and only if there is

no path from u to v in G avoiding the edge (u, v).
Proof: Let G = (V,E) be a DAG with u, v ∈ V

and (u, v) ∈ E. Let G′ = (V ′, E′) = G|{(u,v)} be the

coarse graph obtained when merging u and v. Let w be the

merged, coarser vertex of G′ corresponding to {u; v}.
If there is a path from u to v in G avoiding the edge

(u, v), then obviously all the edges of this path are also in



G′ and the corresponding path in G′ goes from w to w,

which creates a cycle in the coarse graph.

Assume that there is a cycle in the coarse graph G′. This

cycle has to pass through w; otherwise, it must be in G
which is impossible by the definition of G. Thus, there is a

cycle from w to w in the coarse graph G′. Let a ∈ V ′ be the

first vertex visited by this cycle and b ∈ V ′ be the last one.

Let p be an a ❀ b path in G′ such that (w, a) ·p ·(b, w) is a

w ❀ w cycle in G′. Note that a can be equal to b and in this

case p = ∅. By the definition of the coarse graph G′, a, b ∈
V and all edges in the path p are in E\{(u, v)}. Moreover,

either (u, a) ∈ E or (v, a) ∈ E, and either (b, u) ∈ E or

(b, v) ∈ E:

• (u, a) ∈ E and (b, u) ∈ E is impossible because

otherwise, (u, a) ·p · (b, u) would be a u ❀ u cycle in

the original graph G.

• (v, a) ∈ E and (b, v) ∈ E is impossible because

otherwise, (v, a) · p · (b, v) would be a v ❀ v cycle

in the original graph G.

• (v, a) ∈ E and (b, u) ∈ E is impossible because

otherwise, (u, v) · (v, a) · p · (b, u) would be a u ❀ u
cycle in the original graph G.

Thus (u, a) ∈ E and (b, v) ∈ E. So, (u, a) · p · (b, v) is

a u ❀ v path in the G avoiding the edge (u, v), which

concludes the proof.

At each step of the coarsening phase, we want to find

a matching M ensuring that the coarsened graph will be

acyclic. For running time complexity reasons, we rely only

on static information while searching for a feasible match-

ing. Let TOPL(v) be the level of a vertex v in a topological

ordering of G = (V,E). In Theorem 2, we give the neces-

sary and sufficient conditions for a matching to be feasible.

Theorem 2 (Correctness of the proposed coarsening):

Let G = (V,E) be a DAG and M =
{(u1, v1), . . . , (uk, vk)} a matching such that:

• ∀i ∈ {1, . . . , k}, TOPL(vi) = TOPL(ui) + 1, or

Succ[ui] = {vi}, or Pred[vi] = {ui},
• ∀i 6= j ∈ {1, . . . , k}, either (ui, vj) /∈ E or

TOPL(ui) 6= TOPL(vj) + 1.

Then, the coarse graph G|M is acyclic.

Proof: Let us assume (for the sake of contradiction)

that there is a matching with the same properties

above, and the coarsened graph has a cycle. We pick

M = {(u1, v1), . . . , (uk, vk)} a minimal cardinality one.

Let wi be the merged vertex in the coarsened graph G|M

obtained by merging ui and vi for all {1, . . . , k}. By

assumption, there is a cycle in G|M . Let us consider c a

minimum length cycle in G|M . This cycle passes through

all the wi vertices. Otherwise, there would be a smaller

cardinality matching with the properties above and creating

a cycle in the coarsened graph, contradicting the minimal

cardinality of M . Let us renumber the wi vertices such

that c is a w1 ❀ w1 cycle which passes through all the wi

vertices in the non-decreasing order for the indices.

After the reordering, for every i ∈ {1, . . . , k}, there is a

path in G|M from wi to wi+1 (for the rest of the proof, let

w0 = wk and wk+1 = w1 to simplify the notation). Given

the definition of the coarsened graph, either 1) there is a

ui ❀ ui+1 path in G; or 2) there is a ui ❀ vi+1 path in

G; or 3) there is a vi ❀ ui+1 path in G; or 4) there is a

vi ❀ vi+1 path in G.

Let us assume that there exists an i0 ∈ {1, . . . , k} such

that there is a path from wi0−1 = {ui0−1; vi0−1} to ui0

and another path from ui0 to wi0+1 = {ui0+1; vi0+1} in

G. Then there is a wi0−1 ❀ wi0+1 path in the coarsened

graph obtained by merging all the endpoints except ui0 and

vi0 . Hence, the matching M\{(ui0 , vi0)} also has the same

properties and forms a cycle in the coarsened graph, which

contradicts the minimal cardinality assumption on M .

A similar contradiction arises if we assume that there

exist two paths wi0−1 ❀ vi0 and vi0 ❀ wi0−1 in G (or

wi0−1 ❀ ui0 and vi0 ❀ wi0−1 in G). Thus, for every

i ∈ {1, . . . , k}, there is a ui ❀ vi+1 path in G and, since

there is no path from vi to vi+1, vertex ui has to have

another successor than vi. Similarly, since there is no path

from ui to ui+1, vertex vi+1 has to have another predecessor

than ui+1. According to the first matching property, for

every i ∈ {1, . . . , k}, TOPL(ui) + 1 = TOPL(vi).

Since there is a path from ui to vi+1,

TOPL(ui) + 1 ≤ TOPL(vi+1). According to the second

property, either there is at least an intermediate vertex

between ui and vi+1 and then TOPL(ui)+1 < TOPL(vi+1);
or TOPL(ui) + 1 6= TOPL(vi+1) and then TOPL(ui) + 1 <
TOPL(vi+1). Thus, in any case, for every i ∈ {1, . . . , k},
TOPL(vi) < TOPL(vi+1), which leads the self-contradicting

statement TOPL(v1) < TOPL(vk+1) = TOPL(v1) and

concludes the proof.

We propose different matching algorithms ensuring that

all the graphs obtained in the multilevel hierarchy are

acyclic. These algorithms consider all the edges in the

graph, one by one, and put them in the matching if they

respect the properties of Theorem 2. The traversal order for

the edges is based on a vertex traversal order and a priority

on adjacent edges. The matching algorithms (depending on

different vertex traversal orders and priority definitions on

the adjacent edges) are described in Algorithm 1. Since, we

can compute the TOPL value of all vertices in O(|V |+ |E|)
time, the overall complexity of Algorithm 1 is O(|V |+ |E|).
We tried two traversal orders of the vertices (random vertex

traversal and depth-first topological traversal) and two

priority orders for the adjacent edges (random edge traversal

and traversal in the non-increasing order of their weights).



Algorithm 1: CompMatching

Data: Directed graph G = (V,E), a traversal order of

the vertices in V , a priority on edges

Result: A feasible matching M of G
1 match← ∅
2 top← CompTopLevels(G)

3 for u ∈ V do mark[u]← false
4

5 for u ∈ V following the traversal order in input do

6 if mark[u] then continue

7

8 for v ∈ Pred[u] ∪ Succ[u] following given priority

on edges do

9 if mark[v] then continue

10

11 if (top[u] 6= top[v]− 1) and (|Pred[v]| 6=
1) and (|Succ[u]| 6= 1) then continue

12

13 if v ∈ Pred[u] then

14 M ←M ∪ {(v, u)}
15 for w ∈ Succ[v] do

16 if top[v] = top[w]− 1 then

17 mark[v]← false
18 else

19 M ←M ∪ {(u, v)}
20 for w ∈ Succ[u] do

21 if top[u] = top[w]− 1 then

22 mark[w]← false
23 mark[u]← mark[v]← true
24 return M

B. Initial Partitioning

After the coarsening phase, we compute an initial acyclic

partitioning of the coarsened graph. To do that, we present

different heuristics based on existing algorithms in the

literature. Since the number of edges in the coarsest graph

is relatively small, it is a good practice to try different

initial partitioning algorithms and pick the best solution.

1) Kernighan’s Algorithm: To compute an initial parti-

tioning of the coarsest graph, we first topologically order

the vertices of this final graph. Then we use Kernighan’s

algorithm [10] to generate an optimal partition based on this

topological ordering. Since our multilevel partitioner finds

an acyclic partition with exactly k parts while respecting

an upper bound constraint on their weights, B, we slightly

modified the dynamic programming formulation given in

Kernighan’s algorithm. This new dynamic program has a

linear execution time in the number of edges times k, if the

part weights are considered as constant. To avoid having

this complexity, we use the following heuristic as initial

partitioning. We first run the original Kernighan’s algorithm

with an upper bound equal to B and a lower bound equal

to W − (k − 1) × B where W is the total weight of the

graph. By doing this, there is still no guarantee on the

number of parts, but we reduced the space of solutions

without removing any solution with k parts, thus increasing

our chances to find a solution with k parts. If it fails to find

a solution with k parts (which means that for these given

upper bound and lower bound, and this topological order

of the vertices, the best partition does not have k parts),

we run our modified version of the Kernighan’s algorithm

ensuring a number of partition parts equal to k.

2) Greedy Partitioning: We propose another initial

acyclic partitioning heuristic (for initial partitioning) using a

greedy algorithm filling the parts one by one with the current

best eligible vertex among the free vertices. At any given

time, a free vertex is a vertex that has not been put in a part

yet. An eligible vertex is a free vertex without predecessors

or whose predecessors are all not free. For each eligible

vertex u, we define gaini(u) as the decrease in the edge cut

when putting it into part Vi. Thus, the best eligible vertex

is the one with the largest gain for the part we are currently

filling. The gains can be computed as shown in Algorithm 3.

Algorithm 2: CompGain

Data: Directed graph G = (V,E), vertex u, partition

part, and destination part d
Result: Gain of moving vertex u to part d

1 gain← 0
2 for v ∈ Pred[u] do

3 if part[u] = part[v] then

4 gain← gain− cv,u
5 else if part[v] = d then

6 gain← gain+ cv,u
7 for v ∈ Succ[u] do

8 if part[u] = part[v] then

9 gain← gain− cv,u
10 else if part[v] = d then

11 gain← gain+ cv,u
12 return gain

C. Refinement/Uncoarsening

During the uncoarsening level corresponding to the ℓ-th
coarsening level, we project the partition Pℓ+1 obtained for

Gℓ+1 to Gℓ. Then we refine it by using an FM-like, move-

based direct k-way refinement algorithm. In the undirected

case, the refinement process computes the k − 1 gains

for each vertex, i.e., the decrease in the edge-cut when

the vertex is moved to other part. The move with the

highest gain is performed, and the corresponding vertex is

marked so that it will not be moved again in this refinement

pass. However, in the directed case, the best move can

violate the acyclicity condition. In the refinement algorithm

proposed by Cong et al. [11], a safety check is performed

before moving a vertex. If the move violates acyclicity, it

is not performed, and the algorithm considers the next best

move. We propose a variant of this algorithm with a better



Algorithm 3: Greedy Partitioning

Data: Directed graph G = (V,E) and number of parts

k
Result: An acyclic partition part of G

1 lb ← 0.9× |V |
k

2 ∀i ∈ {1, ..., k}, Vi ← ∅; ∀u ∈ V, free[u]← true
3 for i ∈ {1, ..., k − 1} do

4 set← {u ∈ V, such as Pred[u] = ∅ or ∀v ∈
Pred[u], free[v] = false}

5 for u ∈ set do

6 gaini[u]← CompGain(G, u, part, i)
7 heap← Max-heap associated to gaini
8 while |Vi| < lb do

9 u← Extract max from heap

10 Vi ← Vi ∪ {u}
11 free[u]← false
12 for v ∈ Succ[u] do

13 ready ← true
14 for w ∈ Pred[v] do

15 if free[w] = true then ready ← false
16 if ready then

17 gaini[v]← CompGain(G, v, part, i)
18 Insert v in heap

19 return {V1, ..., Vk}

complexity which traverses the vertices one by one and

perform the best feasible move for each.

1) Acyclic k-way refinement: The proposed heuristic

relies on the cheap verification of a particular move not

creating a cycle in the quotient graph. In short, a quotient

graph is created at the beginning of the refinement pass and

updated through the heuristic. By keeping the weights of

the edges in the quotient graph, we can maintain it in time

O(degree(u)) after moving a vertex u. Checking if a given

move will create a cycle can be performed in O(k2) time

by first trying to topologically sort the parts based on the

updated quotient graph. If the topological sort fails, it means

that the updated quotient graph has a cycle and hence, the

move cannot be performed.

If the best move for a given vertex creates a cycle in the

quotient graph, we perform its best feasible move if its gain

is not smaller than the second best gain for this vertex. With

this approach, we may perform a feasible move even if it is

not the best one available while avoiding moves with insuf-

ficient gains. Algorithm 4 describes the refinement heuristic.

2) Topological refinement: We also design a new FM-

like, move-based direct k-way refinement algorithm that

ensures the acyclicity of the partition, based on a topological

order of the parts.

Definitions: Given an acyclic partition P = {V1, . . . , Vk},
we compute a topological order among parts that will be

maintained during the refinement process. For two parts Vi

and Vj , we write Vi ≺ Vj if Vi comes before Vj in that

topological order. For simplicity, we assume that the parts

Algorithm 4: Acyclic k-way Refinement

Data: Directed graph G = (V,E), partition part

Result: Refined partition part

1 for u ∈ V do

2 copy[u]← part[u]
3 moved[u]← false
4 ec← CompEdgeCut(G, part)
5 ecmin← ec
6 QG← BuildQuotientGraph(G, part)
7 for u ∈ V and k ∈ {1, ..., k} do

8 gain[u][k]← CompGain(G, u, part, k)
9 for u ∈ V do maxgain[u]← maxi=1..k{gain[u][i]}

10 heap← Max-heap associated to maxgain

11 idx, ecidx← 0
12 while heap not empty do

13 u← Extract max from heap

14 parts← Sorted({1...k}, key = gain[u][·])
15 i← 1
16 k ← parts[i]
17 while CreateCycle(QG, u, k, part) and

gain[u][k] ≥ gain[u][parts[2]] do

18 i← i+ 1
19 k ← parts[i]
20 moves[idx]← u
21 idx← idx+ 1
22 part[u]← k
23 UpdateQuotientGraph(QG)
24 ec← ec− gain[u]
25 if ec < ecmin then

26 ecmin← ec
27 ecidx← idx
28 for v ∈ Pred[u] ∪ Succ[u] do

29 if not moved[v] then Update(heap, gain, v)
30 for i = idx− 1 downto ecidx do

31 part[moves[i]] = copy[moves[i]]
32 return part

are renumbered such that V1 ≺ V2 ≺ · · · ≺ Vk. Let a

vertex be an incoming boundary vertex if it has no incoming

edge, or if all its incoming neighbours are in another part.

Let a vertex be an outgoing boundary vertex if it has no

outgoing edge or if all its outgoing neighbours are in another

partition. Finally, let a vertex be a boundary vertex if it is

an incoming boundary vertex and/or an outgoing boundary

vertex. If a vertex is not a boundary vertex, it cannot be

moved without violating the acyclicity condition. For each

incoming boundary vertex u in the part Vu, let V u
max be

the largest part index (according to ≺) of its incoming

neighbours. To keep the topological order among the parts,

the vertex u can thus be moved only to the parts Vi such that

V u
max � Vi ≺ Vu. Since V u

max is the only one of these parts

hosting a neighbor of u, the vertex u can only be moved

to the part V u
max. Similarly, for each outgoing boundary

vertex u, we define V u
min the minimum partition of its

outgoing neighbours according the ≺ relation. To maintain



the topological order among the parts, the vertex u can thus

be moved only to the parts Vi such that Vu ≺ Vi � V u
min.

For the same reason as before, u can only be moved to

the part V u
min. There are rare cases where u is both an

incoming and outgoing boundary vertex at the same time.

Such vertices can be moved to either V u
max or V u

min but we

will just consider the part with the largest gain. Hence, to

maintain the topological order among the parts, we use a

single eligible part for each boundary vertex.

Move selection heuristic: Our proposed refinement algo-

rithm maintains a list of the boundary vertices at each step,

the single part they can be moved to, and the gain for this

move. These gains are stored in a heap to easily retrieve

the maximum gain at each refinement step and to move the

vertex with the largest gain. We use a tie-breaking scheme

which chooses the move that will result in the smallest

maximum size for a part. To avoid being stuck in a local

minimum, we move every vertex that have not been moved

yet even if its gain is negative. At the end, we roll back

to the best partition observed. This refinement algorithm is

described in Algorithm 6.

Algorithm 5: Update(heap, moveto, gain, u)

Data: Number of parts k, acyclic partition part, heap

of boundary vertices heap, moveto, gain,

vertex u to update

Result: Update heap, moveto, and gain

1 if Pred[u] = ∅ then

2 max← max(part[u]− 1, 1)
3 else

4 max← max{part[v] for v ∈ Pred[u]}
5 if Succ[u] = ∅ then

6 min← max(part[u] + 1, k)
7 else

8 min← min{part[v] for v ∈ Succ[u]}
9 if (max 6= part[u]) and (min = part[u]) then

10 Put u in heap

11 moveto[u]← max
12 gain[u]← CompGain(G, u, part,max)
13 if (min 6= part[u]) and (max = part[u]) then

14 Put u in heap

15 moveto[u]← min
16 gain[u]← CompGain(G, u, part,min)
17 if (min 6= part[v]) and (max 6= part[u]) then

18 Put u in heap

19 gain1← CompGain(G, u, part,min)
20 gain2← CompGain(G, u, part,max)
21 if gain1 > gain2 then

22 moveto[u]← min
23 gain[u]← gain1
24 else

25 moveto[v]← max
26 gain[v]← gain2

Algorithm 6: Topological Refinement

Data: Directed graph G = (V,E), partition part

Result: Refined partition part

1 for u ∈ V do copy[u]← part[u]
2 ec← CompEdgeCut(G, part)
3 ecmin← ec
4 moveto, gain, moved, moves← []
5 heap← Empty max-heap associated to gain

6 for u ∈ V do

7 Update(heap, moveto, gain, u)
8 moved[u]← false
9 idx, ecidx← 0

10 while heap not empty do

11 u← Extract max from heap

12 moves[idx] = u
13 idx← idx+ 1
14 part[u]← moveto[u]
15 ec← ec− gain[u]
16 if ec < ecmin then

17 ecmin← ec
18 ecidx← idx
19 for v ∈ Pred[u] ∪ Succ[u] do

20 if not moved[v] then

21 Update(heap, moveto, gain, v)
22 for i = idx− 1 downto ecidx do

23 part[moves[i]] = copy[moves[i]]
24 return part

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We have performed an extensive evaluation of the pro-

posed multilevel directed graph acyclic partitioning method

(dagP) on a set of instances from the Polyhedral Benchmark

suite (PolyBench) [18]. The experiments were conducted

on computers equipped with dual 2.4 GHz Xeon E5-2680

processors and 128GB memory.

We have performed two different sets of experiments. In

the first set, we aimed to evaluate the merits of different

options of the proposed dagP method. In the second set

of experiments, we investigated the effectiveness of dagP

in comparison to other partitioning methods. The options

that were varied include the coarsening matching order,

the coarsening matching method, the initial partitioning

method, and the refinement method. The names of the

heuristics in the figures follow the pattern Order-Match-

Initial Partition-Refinement where:

• Order defines the traversal order of the vertices during

the coarsening phase described in Section IV-A: When

it is ‘Rand’ (respectively ‘Top’), the matching algo-

rithm (Algorithm 1) traverses the vertices in a random

order (respectively in a depth-first topological order).

• Match defines the order while traversing the adjacent

edges in the matching algorithm: in ‘Rand’, the adjacent

edges are traversed in a random order; in ‘HEM’ (resp.



Graph Parameters #vertex #edge out-deg. deg.

2mm P=10, Q=20, R=30, 36,500 62,200 40 1.704
S=40

3mm P=10, Q=20, R=30, 111,900 214,600 40 1.918
S=40, T=50

adi T=20, N=30 596,695 1,059,590 109,760 1.776
atax M=210, N=230 241,730 385,960 230 1.597
covariance M=50, N=70 191,600 368,775 70 1.925
doitgen P=10, Q=15, R=20 123,400 237,000 150 1.921
durbin N=250 126,246 250,993 252 1.988
fdtd-2d T=20, X=30, Y=40 256,479 436,580 60 1.702
gemm P=60, Q=70, R=80 1,026,800 1,684,200 70 1.640
gemver N=120 159,480 259,440 120 1.627
gesummv N=250 376,000 500,500 500 1.331
heat-3d T=40, N=20 308,480 491,520 20 1.593
jacobi-1d T=100, N=400 239,202 398,000 100 1.664
jacobi-2d T=20, N=30 157,808 282,240 20 1.789
lu N=80 344,520 676,240 79 1.963
ludcmp N=80 357,320 701,680 80 1.964
mvt N=200 200,800 320,000 200 1.594
seidel-2d M=20, N=40 261,520 490,960 60 1.877
symm M=40, N=60 254,020 440,400 120 1.734
syr2k M=20, N=30 111,000 180,900 60 1.630
syrk M=60, N=80 594,480 975,240 81 1.640
trisolv N=400 240,600 320,000 399 1.330
trmm M=60, N=80 294,570 571,200 80 1.939

Table I: Instances from the Polyhedral Benchmark Suite.

‘NWHEM’), the adjacent edges are traversed in the

non-increasing order of their weights (resp. in the

non-increasing order of their weight divided by the

weight of the corresponding adjacent vertex).

• Initial Partition defines which algorithm described

in Section IV-B will be used to partition the coarsest

graph. These algorithms are run multiple times, and

the best solution is picked as the initial partition. When

the value is ‘Kern’ (resp. ‘GP’), we run the Kernighan

algorithm (resp. the Greedy Partitioning) six times.

When the value is ‘Ker+GP’, we run Kernighan and

Greedy Partitioning three times each.

• Refinement defines which refinement heuristic

described in Section IV-C will be used during the

uncoarsening phase. When its value is ‘AcycKWay’

(resp. ‘TopRef’) we use the acyclic k-way refinement

heuristic (resp. the topological refinement heuristic).

We use performance profiles [19] to present the results.

In the first set of experiments, we compared the total

number of edge cuts and the partitioning time for varying

options of the proposed dagP method. We use the ratio of

a performance indicator to the best of all the dagP options

as the performance metric and call it τ . A point (τ, f) in

the profile means that in f fraction of the test cases, the

performance indicator of the corresponding algorithm is at

most τ times worse than the best algorithm’s performance

indicator. Hence, the closer to the y-axis is the better the

option combination is. These experiments are performed

using K ∈ {2, 4, 8, 16, 32}, and on the 23 benchmarks seen

in Table I. For each graph in the Benchmark set, we run

each heuristic 10 times with different random seeds.

B. Experimental Results

The first performance profile in Fig. 3a uses the total edge

cut as the performance indicator. As the figure shows, using a

depth-first topological ordering for coarsening in dagP (first

three Top-X-X-X variants in the figure) generally performs

the best. In particular, when this coarsening and both of

the Kernighan and Greedy Partitioning algorithms have been

used, the variant obtains at most 1.3× of the best result for

about 90% of the instances.

The second performance profile in Fig. 3b uses the par-

titioning time as the performance indicator. Here, the dagP

variants with different options perform similarly. However,

as the figure shows, Algorithm 4 (acyclic k-way refinement)

degrades the performance of dagP. The Top-X-X-X variants,

which produce partitions with small edge cut values, are

slower when the Kernighan’s algorithm is used during the

initial partitioning phase. Although they are only slower at

most 1.6× than the fastest one for 70% of the benchmark

instances, for most of the remaining 30% they are more than

three times slower. This implies a performance bottleneck

for this option combination. However, as shown in Fig. 3a,

this combination also yields high-quality partitions.

The second set of performance profiles starting from

Fig. 4a displays the comparison of three DAG partition-

ing methods. Since the partition is required to preserve

an acyclic dependency structure, we limit our analysis to

only algorithms that produce a DAG partitioning. Figure 4a

uses the total edge cut as the performance indicator. The

dagP variant with the best edge-cut performance, Top-Rand-

Ker+GP-TopRef, is chosen for this set of experiments. As

the figure shows, this variant is the best one for about 70%
of the benchmark instances and is within 1.1× of the best

method in about 90% of them.

The performance profile in Fig. 4b uses the partitioning

time as the indicator. We did not optimize Fauzia et al.’s

algorithm, hence, it is excluded from the figure. Thanks

to the coarsening phase of the multilevel approach, which

reduces the number of vertices and subsequently the search

space, the proposed method performs the best in almost

100% of the benchmark instances. On the other hand,

Kernighan’s algorithm is more than 20× slower than dagP

for about 50% of these instances.

Figure 5a uses the total communication volume as the

performance indicator. The results are similar to that of the

edge cut profile, since the two metrics are closely related.

The difference is that for the total communication volume,

multiple edges from a single vertex to vertices in another part

is counted as one. Hence, unlike the edge cut, the number of

edges is not important for this metric which models many

real-life applications better. For this performance indicator,

dagP performs the best in about 70% of benchmark instances

and within the 1.2× of the best in about 95% of them.

Figure 5b uses the critical path length or the latency of the
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Figure 3: Performance profiles for dagP variants with different
options: edge cut and partitioning time are used as two performance
indicators. To generate the variants, Rand-Rand-Ker+GP-TopRef
is used as the base variant and a few options are changed. We
observed that AcycKWay does not improve the edge cut compared
to the base variant, hence it is used in only one. On the other hand,
as the figure shows, when a topological vertex traversal order is
employed in the coarsening, the edge cut becomes smaller.

benchmark for performance profiles. The critical path length

is defined as the length of the longest series of nodes and

edges starting from an input node and ending at an output

node. For this evaluation, we assumed that edges that cross

partitions have a weight of 11 nanoseconds representing

the latency to the L3 cache and edges within the same

partition have a weight of 1 nanosecond representing the

L1 cache. Each node also has a latency of 1 to model task

executions. Even though dagP is not optimized for mini-

mizing the critical path length, we present the comparison

to get an idea of its partitions latency characteristics. The

best latency is obtained by Kernighan’s algorithm, Fauzia

et al.’s algorithm, and dagP for 85%, 50%, and 45% of the

instances. That being said, dagP produces partitions with

critical path latencies that are at most 1.25× worse than the

best one for about 95% of the benchmark instances.

In summary, our approach is the first algorithm for the

directed acyclic graph partitioning problem that exploits

multilevel partitioning. Additionally, it finds partitions with

better edge cut and communication volume than previous

proposed algorithms in a fraction of the time.
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Figure 4: Performance profiles comparing three partitioning meth-
ods using edge cut and partitioning time as the performance
metrics. For both metrics, dagP is better than Kernighan’s and
Fauzia et al.’s algorithms.

VI. CONCLUSION

We investigated the problem of partitioning directed

acyclic graphs for task mapping in parallel systems. To

the best of our knowledge, we proposed the first multilevel

partitioning tool specialized for this purpose. Experiments
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Figure 5: Performance profiles comparing three partitioning meth-
ods based on total communication volume and critical path length.
Critical path length is the length of the longest series of nodes and
edges starting from an input node and ending at an output node.
The cut edges that cross partitions have a weight of 11 nanoseconds
to model L3 cache latency, and the intra-part edges have a weight
of 1 nanosecond to model L1 cache. Each vertex also has a latency
of 1 to model task executions.

on various graphs from linear algebra applications confirmed

that dagP is much faster than similar tools and algorithms in

the literature and can produce high quality partitions that will

better exploit the parallelism by reducing the communication

among the processors/nodes.

Future work includes, applying the proposed dagP method

to real DAG execution and see the improvements on perfor-

mance that can be achieved. This requires a scheduling step

to be applied after dagP, which needs further investigations.
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