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Abstract. Load balancing is a powerful technique commonly used in communication and com-
puter networks to improve system performance, robustness and fairness. In this paper, we consider
a general model capturing the performance of communication and computer networks, and on top
of it we propose a decentralized algorithm for balancing load among multiple network paths. The
proposed algorithm is inspired by the modus operandi of the processor-sharing queue and on each
network entry point operates as follows: every time a unit of load completes its service on a path,
it increases by one unit the load of that path and decreases by one unit the load of a path selected
at random with probability proportional to the amount of load on each of the available paths. We
develop a dynamical system to argue that our load-balancer achieves a desirable network-wide utility
optimization.
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1. Introduction. We focus on communication and computer networks whose
performance (or behavior) at equilibrium can be modelled by the solution of an utility
maximization problem of the form

max
∑
r∈R

nrUr

(
Λr
nr

)
subject to

∑
r:j∈r

Λr ≤ Cj , j ∈ J over Λr ≥ 0, r ∈ R,

(1.1)

where R denotes the set of network paths (or routes), J denotes the set of network
congestible resources (or links, queues), Cj denotes the service speed (or capacity)
of link j, nr denotes the number of packets (or customers) using route r, Ur is a
strictly-concave function, and the decision variable Λr, r ∈ R, is interpreted as the
throughput given by the network to all packets moving on route r, i.e. the rate at
which packets flow on route r. The value of function Ur(·) is interpreted as the utility
of a packet sent on route r. The constraints of such optimization can be interpreted
as the capacity constraints or the stability region of the network and the form of
the utility functions depends on which dynamics or communication protocols packets
are forced to follow. Furthermore, within the time scale of interest, the numbers of
packets circulating on each route nr, r ∈ R, is considered constant.

Knowing the throughput of packets on each route r, that is the unique optimizer
of (1.1), one immediately obtains other performance metrics of interest such as the
delay experienced by each packet on r, which follows by an application of Little’s
law [24]. In the following, we say that the performance (or behavior) of a network
is known if the per-route throughputs of that network are known. We will also refer
to (1.1) as the single-path utility optimization.

The utility maximization (1.1) is known to provide a general model able to approx-
imate the performance achieved by a wide class of both communication and computer
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networks. In the networking community, it is well accepted that the throughputs
achieved by packets in telecommunication networks that implement a form of con-
gestion control, e.g. TCP (Transmission Control Protocol), can be approximated by
the unique optimizer of an optimization of the form (1.1) [13, 27, 43]. Similarly, in
computer science, the throughputs achieved by customers in data-centers are often
modelled by the throughputs of a multiclass BCMP or Kelly queueing network [36, 1],
and it is known that the throughputs of such queueing network can be approximated
again by the unique optimizer of an optimization of the form (1.1) [33, 39, 2].

Keeping (1.1) as a general framework to model the behavior of communication
and computer networks, we are interested in the problem of injecting a form of de-
centralized load-balancing control for the packets. This can be done by allowing each
network entry point to send packets among all of its available routes. Such approach
is motivated by the natural fact that communication and computer network resources
can send and receive data from multiple paths simultaneously, and that developing
such control is currently a desirable feature of strong interest, as it aims at improving
performance, fairness and robustness of the network by better exploiting its intrinsic
path diversity. There is a vast literature on this subject and we point the reader to
Section 1.1 for an overview of the related work. In several cases of practical inter-
est, it is desirable to design a decentralized load-balancing control with the property
that the resulting throughputs converge, at equilibrium, to a solution of an utility
maximization problem of the form

maximize
∑
s∈S

wsUs(Γs/ws)(1.2a)

subject to Γs =
∑
r∈s

Λr, s ∈ S(1.2b) ∑
r:j∈r

Λr ≤ Cj , j ∈ J(1.2c)

over Γs, Λr ≥ 0, s ∈ S, r ∈ R,(1.2d)

where S denotes the set of network source-destination pairs, ws =
∑
r∈s nr denotes

the total number of packets using all routes belonging to s, and the remainder of the
notation is as above. Thus, the load-balancer is distributed among all the source-
destination pairs s, and on each s it aims at maximizing the utility of the total
throughput among all the available routes. This is often referred to as resource pool-
ing. Here the individual pathwise constraints of (1.1) are combined and throughput
ia optimized over different source-destination pairs. There are several desirable prop-
erties in designing a decentralized load-balancer achieving the optimization (1.2); see
[16, 31]. For instance, the optimizers of (1.2) can be interpreted as a Nash or Wardrop
equilibrium where the delays on the routes of a given source-destination are all equal
and minimum. Due to its utilitarian objective, throughputs achieved by (1.2) are fair.
We will refer to (1.2) as the multipath utility optimization.

1.1. Related work. During the last decades, decentralized load balancing has
been a central theme for different research areas. The objective is to improve the per-
formance, robustness and fairness of a network by better exploiting its intrinsic path
diversity. In data-centers, for instance, web or application servers are usually repli-
cated several times [36], are often multi-homed [30] and, due to their large sizes, the
network structure has several entry points. In telecommunication networks, smart-
phones can simultaneously use 3G and WiFi [28], and end hosts of peer-to-peer net-
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works can usually choose among different download sources, e.g. as in BitTorrent, [8].
This recurrent network structure is ideal for developing decentralized load-balancing
schemes.

In the networking community, researchers have recently implemented a multipath
version of the TCP (Transmission Control Protocol) [41, 6], and a myriad of (decen-
tralized) load-balancing congestion-control algorithms have been developed during
the last decade; see, e.g., [14, 9, 42, 10, 40, 16, 5, 29, 17, 22]. Here an objective is to
allocate bandwidth that solves a version of the multipath utility optimization (1.2).
Necessary and sufficient conditions for achieving the multipath utility optimization are
developed in [29]. Convergence to the solution of the multipath utility optimization
is usually proven through models based on ordinary differential equations.

1.2. Our Contribution. On top of the general model for network performance
(1.1), we propose a decentralized algorithm that balances the amount of packets asso-
ciated to each network route. On each entry point of the network, our load balancer
only uses local information and works as follows:

Every time a packet completes on a route:
i) increase the number of packets on that route by one;

ii) remove one packet from a route that is selected with probability
proportional to the number of packets on that route.

Underlying this algorithm, there is the heuristic argument that the dynamics of
the number of packets on each route should mimic the dynamics of a Processor-Sharing
(PS) queue1 [18] (from the standpoint of each network resource that implements
such control). This analogy with the PS queue is intuitively driven by the following
coupling argument. When our load balancer increases by one the number of packets
in the route where the completion occurred, this corresponds to an arrival event at the
processor-sharing queue. Consequently, a packet removal from its route is interpreted
as a service event at the queue and, as in the processor-sharing queue, this event
occurs at a rate that is proportional to the number of packets in each route.

Using differential equations, we develop a mathematical model describing the evo-
lution of the number of packets on each route that is induced by our load balancer. As
we describe in Section 3.2, our model assumes that between any two consecutive load-
balancing updates, i.e. steps i) and ii) above, performed on any source-destination s,
the network achieved the (equilibrium) throughputs given by the single-path utility
optimization (1.1). Though we argue that our qualitative results hold even without
it, this time-scale separation argument helps us in reducing the complexity of the
underlying mathematical analysis and more importantly allows for an interpretation
of the resulting equations. In fact, we will exhibit a Lyapunov function L(t) for the
proposed dynamical system satisfying the following property:

dL

dt
= −

∑
s∈S

ΓsD
((Λr

Γs

)
r∈s

∣∣∣∣∣∣(nr
ws

)
r∈s

)
−
∑
s∈S

ΓsD
((nr

ws

)
r∈s

∣∣∣∣∣∣(Λr
Γs

)
r∈s

)
,

where D(·||·) denotes the Kulback-Liebler divergence or relative entropy. From this,
we understand the effect of our processor-sharing heuristic: our load-balancer can
be interpreted as to be equilibrating the relative entropy between the distribution of
packets along each route and the distribution of throughputs along these routes. This
entropy approach contrasts previous studies of multipath routing, which tend to focus

1In a PS queue, all jobs are processed simultaneously and each of them takes 1/n of the available
capacity, provided that n denotes the number of jobs in the queue.
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on placing quadratic bound on Lyapunov functions [14, 16] and/or applying Nyquist’s
stability criterion [9].

Under proportional fairness [13], i.e. Ur(Λr/nr) = log(Λr/nr), we prove in our
main result that the throughputs achieved by the packets converge to the solutions
of the multipath utility optimization (1.2). Our proof is essentially based on duality
arguments connecting the structure of the Lyapunov function L(t) to the objective
of the multipath utility optimization. Then, we adapt our approach to show that
it is possible to design an other load-balancer able to achieve the multipath util-
ity optimization under a general class of utility functions. This follows through an
optimization decomposition argument that is similar to the one used in [12].

The remainder of the paper is organized as follows. Section 2 introduces the
modeling framework. Section 3 presents our decentralized load-balancer, describes
application areas and develops a mathematical model for the dynamics of network
packets. Section 4 is devoted to our main results (Theorems 4.2 and 4.4), which are
proven in Section 5. A number of technical lemmas are deferred to the Appendix for
simplicity of exposition.

2. Multipath Utility Optimization. Let the set J , indexed by j, be the set
of links. These are the network resources affected by congestion and, depending on the
context, can be also interpreted as queues, Internet routers, or web-servers. Packets
circulate in the network following given routes. A route is an ordered set of links,
r = (j1, . . . , jkr ) with j1, . . . , jkr ∈ J . Thus, kr is the number of links on route r.
The set R is the set of routes. A source-destination, s, is a set of routes, thus s ⊂ R.
Each source-destination contains the set of routes available to a host. We think of
hosts as the entry points of the network and can be also interpreted as dispatchers
or end users. The set S gives the set of source-destinations. We assume that there
are no source-destinations that share a common route, i.e., s ∩ s′ = ∅ when s 6= s′.
Thus, we can define s(r) ∈ S as the source-destination to which route r belongs. We
assume that there is one host for each source-destination.

Let nr denote the number of packets on route r ∈ R. Correspondingly, n = (nr :
r ∈ R) is the number of packets on each route. Let ws denote the number of packets
on source-destination s ∈ S. Accordingly, w = (ws : s ∈ S) is the number of packets
on each source-destination. Thus, for s ∈ S

(2.1) ws =
∑
r∈s

nr.

The strictly positive vector C = (Cj : j ∈ J ) gives the capacity (or service rate)
of each link, i.e. the number of packets served per unit of time in a fully utilized link.
Let Λr denote the throughput (or flow rate or bandwidth) allocated by the network to
the packets on route r ∈ R, and let Γs denote the throughput on source-destination
s ∈ S. Thus, for s ∈ S and j ∈ J

Γs =
∑
r∈s

Λr,
∑
r:j∈r

Λr ≤ Cj .

2.1. Proportional Fairness. When a host can distribute packets among mul-
tiple routes, one wishes to design a load-balancer maximizing the utility of the total
throughput between each source-destination pair, and thus achieving the multi-path
utility maximization (1.2). We will first assume that both the optimizations (1.1) and
(1.2) have logarithmic utilities, i.e.

Ur(Λr/nr) = log(Λr/nr), Us(Γs/ws) = log(Γs/ws),(2.2)
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for r ∈ R and s ∈ S respectively. The throughputs achieved with this utility function
are called proportionally fair. Several economic and game-theoretic interpretations
hold in this case [12, 13, 25, 35, 23, 43]. Communication protocols achieving this
optimization objective have been designed and implemented [26, 37, 20]. Further-
more, proportionally fair throughputs approximate the performance of closed multi-
class BCMP or Kelly queueing networks [34, 39, 2], which have been used to model
the performance of data centers [36].

Summarizing so far, our primary goal is to design a decentralized load-balancer
ensuring that the resulting throughputs solve

max
Γ,Λ≥0

∑
s∈S

ws log Γs s.t. Γs =
∑
r∈s

Λr, s ∈ S,
∑
r:j∈r

Λr ≤ Cj , j ∈ J .(2.3a)

We refer to problem (2.3) as the multipath proportionally fair optimization.
We will achieve this optimization by considering a simple load-balancing mecha-

nism which modifies the single-path proportionally fair optimization:

max
Λ≥0

∑
r∈R

nr log Λr s.t.
∑
r:j∈r

Λr ≤ Cj , j ∈ J .(2.4a)

3. Processor Sharing Load Balancing. We develop a simple decentralized
algorithm that balances the amount of packets among multiple routes of a network.
Operated at each host, it sends incoming packets along a given route with a rate pro-
portional to the number of packets in transfer on that route. This modus operandi
is similar to how a Processor-Sharing (PS) queue serves different packet classes [18].
The proportion of service devoted to a class in a PS queue is proportional to the num-
ber of jobs in that class. Given this analogy, we refer to our algorithm as “Processor
Sharing Load Balancer” (PSLB), which is as follows:

Every time a packet completes on a route:
i) increase the number of packets on that route by one;

ii) then, remove one packet from a route that is selected with prob-
ability proportional to the number of packets on that route.

It is clear that PSLB is easy to implement on each host, which only needs to store
the amount of packet on each of its routes. Note that the probability of decreasing
the number of packets on each route is proportional to the number of packets on each
route, as in a PS queue.

3.1. Application areas. There exist at least four scenarios where our algorithm
can be implemented: multipath-TCP, data-centers, wireless networks and peer-to-peer
networks. We discuss each of these.

i) Multipath-TCP : Multipath-TCP (MPTCP) refers to a set of extensions of TCP
(Transmission Control Protocol) that allow each connection to use multiple paths si-
multaneously. MPTCP allows smartphones to simultaneously use 3G and WiFi [28];
it reacts to link failures on a time-scale that is much quicker than that obtained by
updating the routing tables of network routers; it increases resource pooling – that is
where multiple network resources can collectively be seen as a single pooled resource
[21, 7]. Due to these potential benefits, the Internet Engineering Task Force (IETF)
MPTCP working group has recently released three implementations of MPTCP [32].
The first large-scale commercial deployment of MPTCP appeared on September 18th,
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2013, when Apple released iOS 7 [4]. In this setting, our approach aims at balancing
the magnitude of the congestion window associated to each network route available
to host s given the total congestion window ws.

ii) Data Centers: In a data-center, packets are interpreted as http requests, links as
Internet servers and each source-destination as the set of routes available to execute
a web-application. In practice, end-users submit an http request, read on a browser
the result that has been produced by the data-center, and then submit again an other
request. Http requests can be assumed to come from a constant number of end-users,
and the network performance can be modelled by a closed multiclass BCMP/Kelly
queueing network; see, e.g., [36, 1] and references therein. Given their large size, data-
centers usually admit multiple entry points, called dispatchers, which can implement
a load-balancing mechanism. By doing so and assuming that throughputs without
load-balancing can be modelled by an optimization of the form (1.1) (as in, e.g., [1]),
we show that our load-balancer will make throughputs converge to a solution of an
optimization of the form (1.2).

iii) Wireless Networks. In wireless systems, there are reasons to balance load amongst
multiple resources. First, hosts may have access to multiple frequencies in the wire-
less spectrum and these are usually shared between users. Thus, load balancing is
highly relevant in this dynamic spectrum access setting. Further, a wireless host may
have access to multiple transmitters whose signal quality will, amongst other factors,
depend on the distance between host and the transmitter. This access point selection
problem represents a further model where load balancing is required. For an analo-
gous proportional fair load-balancing system and discussion on these systems, see [44].

iv) Peer-to-peer networks. Although we refer to transfers between source destination
pairs, it is clear from the above examples that a single-source is not required in our
modeling setting. The case of peer-to-peer networks gives a further example. Here, a
peer may download elements of a file from multiple peers. By exploiting the diversity
of peers who share a specific file, users can receive high and fair download rates. Once
again, the traffic must be balanced between multiple routes and thus load-balancing
techniques are of importance, see [11].

3.2. Differential Equation Model. We model the time evolution of the num-
ber of packets induced by PSLB through differential equations. Between two consecu-
tive load-balancing updates, we assume that the throughputs allocated to packets by
the network are close to Λ(n), i.e., the equilibrium rates achieved by the single-path
optimization (1.1). We stress that this is possible because rates converge to such
single-path optimization. In other words, we assume that our load-balancer operates
at a time-scale that allows the single-path equilibrium rates to be achieved.

A packet completion on a route r ∈ s will result in a increase in the number
of packets on that route. In view of the time-scale separation argument above, the
rate allocated by the network to such completions is Λr(n). Each completion on a
source-destination results in a decrease in the congestion of a route with probability
proportional to the number of packets on that route. These source-destination com-
pletions occur at rate Γs(n) and the probability of decrease on route r is nr

ws
. Thus,

we model the time evolution of the number of packets in each route obtained when
PSLB is used by the following system of ordinary differential equations: for nr(t) ≥ 0

dnr
dt

= Λr(n)− Γs(n)
nr
ws
,(3.1)
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for all r ∈ s and for all s ∈ S, where n(0) ≥ 0 is such that
∑
r∈s nr(0) = ws for all s.

We refer to any solution n(t) of (3.1) as a fluid solution.
When each source-destination contains a single route and the total number of

packets is kept constant, our model can be compared to the fluid-limit of the flow-level
model studied in [3], which was proposed to model the time evolution of connections
in a communication network with single-path congestion control.

Before continuing, we observe that a special case of practical interest is a net-
work of parallel servers, which gives a bipartite network structure between hosts and
servers. The applications of wireless networks and data centers discussed above are
two examples of a parallel server system. In this case, the solution to the proportional
fair optimization takes a particularly simple form. Namely, the throughput at route
r is proportional to the number of packets (or jobs) that have been sent there, i.e.,

Λr(n) =
nr∑

r′:j∈r′ nr′
Cj ,

where j ∈ r. In this case, the above differential equation takes a very simple form.

4. Main Convergence Results. Using the differential equation model devel-
oped in previous section, we prove our main results (Theorems 4.2 and 4.4). In
Theorem 4.2, we prove that the throughputs achieved by PSLB converge to a solu-
tion of the multipath proportional fair optimization (2.3). In Theorem 4.4, we show
that these properties can be also achieved under a wide class of utility functions.

4.1. Multipath Proportional Fair Optimization. We will demonstrate that
our load balancer is able to modify the single-path flows, which solve the propor-
tionally fair optimization, into a multipath flow control, which solves the multipath
proportional fair optimization. For this purpose, we use the following function

(4.1) L(n)
def
=
∑
s∈S

∑
r∈s

nr log
( nr
wsΛr(n)

)
.

Letting L∗
def
= minn≥0 L(n) subject to

∑
r∈s nr = ws for all s, we show that L(n)−L∗

is a Lyapunov function for the dynamical system (3.1).
The crucial observation about this function is given in the following proposition.

Theorem 4.1. For each point of differentiability of a fluid solution n(t), the
following holds

dL(n(t))

dt
=−

∑
s∈S

Γs(n)

[
D

(
(Λr(n))r∈s

Γs(n)

∣∣∣∣∣∣∣∣ (nr)r∈sws

)
+D

(
(nr)r∈s
ws

∣∣∣∣∣∣∣∣ (Λr(n))r∈s
Γs(n)

)]
,

(4.2a)

where, for two probability distributions ps = (pr : r ∈ s) and qs = (qr : r ∈ s),
D(ps||qs) defines the relative entropy

(4.3) D (ps||qs) =
∑
r∈s

pr log
pr
qr
.

Note that for two discrete probability distributions p and q on the same support, it
is well known, using Jensen’s inequality, that D (p||q) ≥ 0 and that D (p||q) = 0 if
and only if p = q. This immediately implies that L(n(t)) is non-increasing.

Remark 1. The symmetric relative entropy

D(ps||qs) +D(qs||ps),
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as first introduced by Kullback and Leibler [19], is critical to understanding the conver-
gence of single-path connections to the multi-path optimum. Through the symmetric
relative entropy (4.2), PSLB attempts to equate the distribution of packets within the
network and the distribution of throughputs along different routes. If these are un-
equal then the Lyapunov function will decrease further towards its minimum. Through
duality arguments presented shortly, we see that the minimum of the Lyapunov func-
tion L(n) is achieved only at solutions which minimize the multipath proportional fair
optimization.

As a consequence of the last theorem, we obtain our main result, which says that
dynamics of (3.1) converge to the multipath proportional fair optimization (2.3).

Theorem 4.2. For any fluid solution for which L(n(t)) is absolutely continuous,
the source-destination throughputs converge to Γ∗ the optimal solution to the multipath
proportionally fair optimization (2.3),

Γ(n(t)) −−−→
t→∞

Γ∗.

A proof of Theorem 4.1 and Theorem 4.2 can be found in Section 5.1.

4.2. Multipath Utility Optimization. Our prior analysis achieved the mul-
tipath proportional fair objective. However, in this section we show that it can be
generalized to a wide class of utility functions. Through an optimization decomposi-
tion argument, it is known that other utility optimizations can be achieved by altering
the weights associated with the proportional fair objective [12]. Now, we apply a sim-
ilar decomposition in order to modify proportional fair single-path flows towards a
general multipath utility optimization.

First, we introduce some additional notation. For each source destination pair,
let Us : R+ → R be a strictly-increasing continuously-differentiable utility function.
We further assume that the function Γs 7→ ΓsU

′
s(Γs) is continuous, strictly increasing

and with range (0,∞). We note that this assumption holds for all the weighted α-fair
allocations with α < 1 [27]. Given this assumption, we define the function gs(ws) = Γs
such that

(4.4) g−1
s (Γs) = ΓsU

′
s(Γs),

which is well-defined since ΓsU
′
s(Γs) is increasing.

We interpret gs(ws) as the throughput source-destination pair s would expect
given that it has utility function Us and given that its current number of packets from
source to destination is ws. From this interpretation, we now consider a load balancer
who obeys the following dynamics

(4.5)
dnr
dt

= Λr(n)− gs(ws)
nr
ws
,

where Λr(n) is the solution to the single-path proportionally fair optimization problem
(2.4). In view of the fluid model (3.1), we note that these rates are a form of processor-
sharing load balancing: once again, we increment the number of packets for each
packet arrival and decrement it proportionally to the number of packets present in
each of the available routes. The only difference to our prior analysis is that the
number of packets decreases at rate gs(ws) rather than Γs, so the number of packets
between each source-destination pair is no longer conserved. Summing over r ∈ s, we
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see that ws must vary dynamically according to the equations

dws
dt

= Γs(n)− gs(ws), where Γs(n) =
∑
r∈s

Λs(n), ws =
∑
r∈s

nr.

We want to control the number of packets between each source destination pair
so that the logarithm in the proportionally fair optimization is replaced by the more
general utility function Us. With this in mind, we consider the function

(4.6) Gs(ws) = max
Γs≥0

{ws log Γs − Us(Γs)} .

With the addition of function Gs and motivated by the structure of (4.1), we define
the following function

(4.7) H(n) =
∑
r∈R

nr log
nr

wsΛr(n)
+
∑
s∈S

Gs(ws).

Letting H∗
def
= minn≥0H(n) subject to

∑
r∈s nr = ws for all s, we show that H(n)−

H∗ is a Lyapunov function for the dynamical system (4.5).
Once again, the function H balances the relative entropy between different routes

of the network. This is shown in the following proposition, which is proven in Section
5.2.

Theorem 4.3. For each point of differentiability of a fluid solution for (4.5),
n(t), the following holds

dH(n(t))

dt
=−

∑
s∈S

ΓsD
( (Λr)r∈s

Γs

∣∣∣∣∣∣ (nr)r∈s
ws

)
−
∑
s∈S

gs(ws)D
( (nr)r∈s

ws

∣∣∣∣∣∣ (Λr)r∈s
Γs

)
−
∑
s∈S

(
Γs − gs(ws)

)(
log Γs − log gs(ws)

)
.(4.8)

Using that the logarithm is increasing, the term (4.8) is negative. Furthermore,
since D(·||·) ≥ 0, this means that the derivative of the entropy function H(n(t)) is
negative.

As a consequence of Theorem 4.3 and adapting the arguments in the proof of
Theorem 4.2, we can prove that the single-path flows converge to solutions of the
multipath utility optimization (1.2).

Theorem 4.4. For any fluid solution for which H(n(t)) is absolutely continuous
and w(t) is bounded away from zero, the source-destination throughputs converge to
Γ∗ the optimal solution to the multipath utility optimization (1.2),

Γ(n(t)) −−−→
t→∞

Γ∗.

The assumptions in previous theorem deserve a comment.
Remark 2. In the above result, we assume that fluid paths are bounded away from

zero. There are different ways of verifying this condition. First, the Lyapunov function
H(n) is continuous and, provided U ′s(0) =∞, H(n) is minimized with ws > 0 for each
source-destination pair s. Consequently, fluid paths are always bounded from zero for
solutions around the equilibrium that minimizing H(n). Second, if Us(0) = −∞, then
H(n) diverges when ws = 0, and thus fluid paths are bounded from zero.

A proof of Theorem 4.3 and 4.4 can be found in Section 5.2.
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5. Proofs of Main Results. We present proofs for our main results: Theo-
rem 4.2 and Theorem 4.4. For simplicity, we often drop the dependency on n when
referring to quantities Λr(n) and Γs(n).

5.1. Proof of Theorem 4.1 and Theorem 4.2. We require the following
lemma which follows by somewhat standard calculus arguments, for instance see [38,
Lemma 2] for a proof.

Lemma 5.1. If nr > 0 then

∂L(n)

∂nr
= log

(
nr

wsΛr(n)

)
+ 1.

With this, we can prove Theorem 4.1.

Proof. [Proof of Theorem 4.1] For the following sequence of equalities, we use the
shorthand that n = n(t), L = L(n(t)) and Γ = Γ(n(t)):

dL

dt
=
∑
r∈R

dnr
dt

∂L

∂nr
=
∑
s∈S

∑
r∈s
nr>0

(
Λr −

nr
ws

Γs

)(
log

nr
wsΛr

+ 1

)

=
∑
s∈S

∑
r∈s

(
Λr −

nr
ws

Γs

)
log

nr
wsΛr

(5.1a)

= −
∑
s∈S

Γs
∑
r∈s

Λr
Γs

log
wsΛr
nrΓs

−
∑
s∈S

Γs
∑
r∈s

nr
ws

log
nrΓs
wsΛr

(5.1b)

= −
∑
s∈S

ΓsD

(
(Λr)r∈s

Γs

∣∣∣∣∣∣∣∣ (nr)r∈sws

)
−
∑
s∈S

ΓsD

(
(nr)r∈s
ws

∣∣∣∣∣∣∣∣ (Λr)r∈sΓs

)
(5.1c)

In the first two equalities above, we apply the chain rule and the definition of the
derivatives of n and L, from fluid equations (3.1) and Lemma 5.1. In the equality
(5.1a), we cancel terms and observe that we can exclude and include terms where
nr = 0 because both dnr

dt = 0 and (Λr(n) − nrΓs/ws) = 0 must hold at times when
nr = 0. Then, in equalities (5.1b) and (5.1c) we add and subtract terms Γs log Γs and
observe that the terms summed are relative entropy terms.

To prove Theorem 4.2, we will need the following technical lemma, which is
straightforward to verify and gives first order properties for our Lyapunov function
L.

Lemma 5.2. L(n) is continuous and convex and thus N ∗, the set of the optimal
solutions to (5.1), is compact and convex.

A proof of Lemma 5.2 can be found in the Appendix. The following Lemma
bounds terms Γs(n).

Lemma 5.3. a) The function L(n) can be characterized through its dual as follows

L(n) = max
q≥0

∑
r∈R

nr log

∑
j∈r

qj

−∑
j∈J

qjCj +
∑
r∈R

nr −
∑
s∈S

ws logws.(5.2)

b) There exists a constant Γmin > 0 not dependent on n such that for all n and each
s ∈ S we have Γs(n) ≥ Γmin.
A proof of Lemma 5.3 can be found in the Appendix.
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The following lemma finds a dual description for the Lyapunov function L and
also equates the minimized Lyapunov function with the multipath proportionally fair
optimization.

Lemma 5.4. The minimum of Lyapunov function L(n) relates to the multi-path
proportionally fair optimization as follows

min
n≥0

L(n) subject to
∑
r∈s

nr = ws, s ∈ S

=− max
Γ,Λ≥0

∑
s∈S

ws log Γs subject to Γs =
∑
r∈s

Λr, s ∈ S.

Moreover, L(n) is minimal if and only if

(5.3)
nr
ws

=
Λr(n)

Γs(n)

for each r ∈ R (with r ∈ s) such that nr > 0.
Proof. We have the following equalities

min
n≥0

L(n) subject to
∑
r∈s

nr = ws, s ∈ S

= min
n≥0

min
Λ≥0

∑
s∈S

∑
r∈s

nr log
nr

Λrws
s.t.

∑
r:j∈r

Λr ≤ Cj ,
∑
r∈s

nr = ws, j ∈ J , s ∈ S

= min
Λ≥0

min
n≥0

∑
s∈S

∑
r∈s

nr log
nr

Λrws
s.t.

∑
r∈s

nr = ws,
∑
r:j∈r

Λr ≤ Cj , j ∈ J , s ∈ S

= min
Λ≥0

min
n≥0

∑
s∈S

ws
∑
r∈s

nr
ws

log
(nr
ws

Γs
Λr

)
−
∑
s∈S

ws log Γs

subject to
∑
r∈s

nr = ws,
∑
r:j∈r

Λr ≤ Cj ,
∑
r∈s

Λr = Γs

= min
Λ≥0

−
∑
s∈S

ws log Γs s.t.
∑
r:j∈r

Λr ≤ Cj ,
∑
r∈s

Λr = Γs

The first equality follows by the definition of L(n); in the second equality, we inter-
change the order of minimization; in the third, we add and substract the multipath
proportionally-fair objective; in the final equality, we minimize over n and observe
that the relative entropy term in the objective is minimized to zero when the vector n
is proportional to Λ.

Now we show that (5.3) is a condition for optimality of L(n). Consider the
function

(5.4) L̃(n,Λ) =
∑
s∈S

∑
r∈s

nr log
nr

Λrws
.

It is clear that L̃(n,Λ) is convex. The minimum of L̃(n,Λ) over Λ (satisfying the
network capacity constraints

∑
r:j∈r Λr ≤ Cj , j ∈ J ) is achieved at Λ(n) and the

minimum attained at L(n). The minimum of L̃(n,Λ) over n (satisfying the packet
constraints

∑
r∈s nr = ws, is achieved when nr ∝ Λr. Since we are minimizing a

convex function over a product space, its minimum is the intersection of the marginal
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minimality conditions, i.e. L̃(n,Λ) and thus L(n) is minimized iff Λr = Λr(n), for
r ∈ R and, for all r ∈ s,

Λr(n)

Γs(n)
=
nr
ws
.

The proof of Theorem 4.2 is now fairly straight-forward.
Proof. [Proof of Theorem 4.2] We let L∗ be the minimal value of L(n) over n with∑

r∈s nr = ws, s ∈ S. The last lemma states that

(5.5) L(n) = L∗ iff
nr
ws

=
Λr(n)

Γs(n)
.

From Proposition 4.1, we have that

dL

dt
= −

∑
s∈S

ΓsD

(
(Λr)r∈s

Γs

∣∣∣∣∣∣∣∣ (nr)r∈sws

)
−
∑
s∈S

ΓsD

(
(nr)r∈s
ws

∣∣∣∣∣∣∣∣ (Λr)r∈sΓs

)
.

Thus, as the relative entropy D(p||q) = 0 iff p = q, we can combine the last two
displays to give that

(5.6)
dL

dt
= 0 iff

Λr(n)

Γs(n)
=
nr
ws
, r ∈ s, s ∈ S iff L(n) = L∗.

So L(n(t)) is decreasing unless n(t) achieves the minimum of L(n). Suppose that
L(n(t)) decreases to some value L′ (which may or may not equal L∗). There must be

a sequence of times {tk}k∈N such that dL(tk)
dt → 0 as tk →∞. By Lemma 5.3b, it can

not be that Γs(n(tk))→ 0 as k →∞, so for this sequence of times it must be that

(5.7) D

(
(nr(tk))r∈s

ws

∣∣∣∣∣∣∣∣ (Λr(tk))r∈s
Γs(tk)

)
−−−−→
k→∞

0.

Thus, by continuity of the relative entropy at 0, any limit point, n∗,Λ∗,Γ∗ of the
sequences n(tk), Λ(n(tk)), Γ(n(tk)) must satisfy

Λ∗r
Γ∗s

=
n∗r
ws
,

for all r ∈ s, s ∈ S. Thus the minimum of L(n(t)) must be the optimal value L′ = L∗.
So L(n(t)) converges to L∗, we now show that Γ(n(t)) converges to Γ∗. Observe

L(n(t))− L∗

=
∑
s∈S

∑
r∈s

nr(t) log

(
nr(t)Γs(n(t))

wsΛr(n(t))

)
+
∑
s∈S

ws log Γ∗s −
∑
s∈S

ws log(Γs(n(t)))

≥
∑
s∈S

ws log Γ∗s −
∑
s∈S

ws log(Γs(n(t)))

≥0,

where in the first inequality, above, we use the positivity of the relative entropy. So
since L(n(t)) − L∗ converges to 0, and since Γ 7→

∑
s ws log Γs is continuous and

Γs(n(t)) is feasible for each t, it must be that, for s ∈ S,

(5.8) Γs(n(t)) −−−→
t→∞

Γ∗s,

as required.
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5.2. Proof of Theorem 4.3 and Theorem 4.4. Next lemma is a consequence
of Fenchel duality and relates the function Gs given in (4.6) with the utility function
Us and gs in (4.4). The lemma also gives the derivative of our Lyapunov function.

Lemma 5.5. a) The function Gs(ws) is convex. The maximization for Gs(ws)
given by (4.6) is optimized by gs(ws). The function Gs is differentiable with derivative

(5.9) G′s(ws) = log gs(ws).

Further,

(5.10) −Us(Γs) = min
ws≥0

{Gs(ws)− ws log Γs} .

b) The partial derivatives of H are given by the expression

(5.11)
∂H

∂nr
= log

(
nr

wsΛr(n)

)
+ log gs(ws).

A proof of Lemma 5.5 can be found in the Appendix. With this lemma in place, we
can prove Theorem 4.3.

Proof. [Proof of Theorem 4.3] We differentiate H(n(t)) with respect to t. In the
equalities below, we use the shorthand notation w = w(t) n = n(t), Λ = Λ(n(t)) and
Γ = Γ(n(t)) for simplicity:

dH

dt
=
∑
r∈R

dnr
dt

∂H

∂nr
=
∑
r∈R

(
Λr − gs(ws)

nr
ws

)(
log

(
nr
wsΛr

)
+G′s(ws)

)
= +

∑
s∈S

∑
r∈s

Λr log

(
nr
wsΛr

)
−
∑
s∈S

∑
r∈s

gs(ws)
nr
ws

log

(
nr
wsΛr

)
+
∑
s∈S

∑
r∈R

ΛrG
′
s(ws)−

∑
s∈S

∑
r∈s

gs(ws)
nr
ws
G′s(ws)

= +
∑
s∈S

Γs
∑
r∈s

Λr
Γs

log

(
nrΓs
wsΛr

)
−
∑
s∈S

gs(ws)
∑
r∈s

nr
ws

log

(
nrΓs
wsΛr

)
(5.12a)

−
∑
s∈S

Γs log Γs +
∑
s∈S

gs(ws) log Γs +
∑
s∈S

ΓsG
′
s(ws)−

∑
s∈S

gs(ws)G
′
s(ws)

=−
∑
s∈S

ΓsD
( (Λr)r∈s

Γs

∣∣∣∣∣∣ (nr)r∈s
ws

)
−
∑
s∈S

gs(ws)D
( (nr)r∈s

ws

∣∣∣∣∣∣ (Λr)r∈s
Γs

)
(5.12b)

−
∑
s∈S

(
Γs − gs(ws)

)(
log Γs − log gs(ws)

)
.

In the second equality, we used Lemma 5.5.b. In (5.12a), we have added terms
Γs log Γs and multiplied/divided by Γs to express summands in terms of the relative
entropy in (5.12b). In (5.12b), we have also used (5.9).

We let H∗ be the minimal value of H(n) over n with
∑
r∈s nr = ws, s ∈ S. Next

lemma extends Lemma 5.4.
Lemma 5.6. The minimum of H(n) relates to the multi-path utility optimization

as follows

min
n≥0,w≥0

H(n) subject to
∑
r∈s

nr = ws, s ∈ S
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= − max
Γ,Λ≥0

∑
s∈S

Us(Γs) subject to Γs =
∑
r∈s

Λr, s ∈ S,
∑
r:j∈r

Λr ≤ Cj , j ∈ J .

Moreover, H(n) is minimal if and only if

(5.13)
nr
ws

=
Λr(n)

Γs(n)

for each r ∈ R (with r ∈ s) such that nr > 0 and

(5.14) gs(ws) = Γs(n)

for each s ∈ S.
A proof of Lemma 5.6 can be found in the Appendix. With Lemma 5.6 we can

prove Theorem 4.4.
Proof. [Proof of Theorem 4.4] We let H∗ be the minimal value of H(n) over n.

Last lemma says that

(5.15) H(n) = H∗ iff gs(ws) = Γs(n) and
nr
ws

=
Λr(n)

Γs(n)
, nr > 0.

From Theorem 4.3 we have that

dH(n(t))

dt
=−

∑
s∈S

ΓsD
( (Λr)r∈s

Γs

∣∣∣∣∣∣ (nr)r∈s
ws

)
−
∑
s∈S

gs(ws)D
( (nr)r∈s

ws

∣∣∣∣∣∣ (Λr)r∈s
Γs

)(5.16a)

−
∑
s∈S

(
Γs − gs(ws)

)(
log Γs − log gs(ws)

)
.(5.16b)

It is clear that dH
dt is negative and combining the last two displays, (5.15) and (5.16),

we have that

(5.17)
dH

dt
= 0 iff gs(ws) = Γs(n) and

nr
ws

=
Λr(n)

Γs(n)
, nr > 0.

So H(n(t)) is decreasing unless n(t) achieves the minimum of H(n). Suppose
that H(n(t)) decreases to some value H ′ (which may or may not equal H∗). There

must be a sequence of times {tk}k∈N such that dH(tk)
dt → 0 as tk →∞. Since w(t) is

bounded from zero, it can not be that Γs(n(tk))→ 0 as k →∞, so for this sequence
of times it must be that

(5.18) D

(
(nr(tk))r∈s

ws

∣∣∣∣∣∣∣∣ (Λr(tk))r∈s
Γs(tk)

)
−−−−→
k→∞

0.

and

(5.19)
(

Γs(tk)− gs(ws(tk))
)(

log Γs(tk)− log gs(ws(tk))
)
−−−−→
k→∞

0.

Thus, by continuity of relative entropy at 0, any limit point, n∗,Λ∗,Γ∗ of the sequences
n(tk), Λ(n(tk)), Γ(n(tk)) must satisfy

Λ∗r
Γ∗s

=
n∗r
ws

and gs(ws) = Γs(n)
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for all r ∈ s, s ∈ S.
Thus the decreasing process H(t) must be decrease to the minimum it value H∗.
Finally, to consider the convergence of the processes n(t), w(t), Λ(t) and Γ(t), we

note that

H(t) = H̃(n(t), w(t),Λ(t)).

for the continuous convex function H̃ given by (7.10).

H̃(n,w,Λ) =
∑
s∈S

∑
r∈s

nr log
nr
wsΛr

+
∑
s∈S

Gs(ws).

It is clear that H̃ has compact level sets and so must converge n(t), w(t) and
Λ(t) must converge to the arguments minimizing H̃ over

∑
r∈s nr = ws, for s ∈ S,∑

r3j Λr ≤ Cj , j ∈ J . As a consequence, Γ(t) must converge to the unique solution
to the the optimization (1.2).

So H(n(t)) converges to H∗, we now show that Γ(n(t)) converges to Γ∗. Observe

H(n(t))−H∗

=
∑
s∈S

∑
r∈s

nr(t) log

(
nr(t)Γs(n(t))

wsΛr(n(t))

)
+
∑
s∈S

Us (Γ∗s)−
∑
s∈S

ws log(Γs(n(t)))

≥
∑
s∈S

Us (Γ∗s)−
∑
s∈S

ws log(Γs(n(t)))

≥0.

So since H(n(t)) − H∗ converges to 0, and since Γ 7→
∑
s ws log Γs is continuous, it

must be that, for s ∈ S,

(5.20) Γs(n(t)) −−−→
t→∞

Γ∗s,

as required.
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7. Proof of Additional Lemmas. Proof. [Proof of Lemma 5.2] To prove that
L(n) is convex, we use the dual formulation proven in Lemma 5.4. Let D(n, q) be the
objective of the dual function (5.2). Observe D(n, q) is linear in n. For probabilities
p = (p0, p1) with p0 + p1 = 1 and for two vectors n0, n1 ∈ RR+ , we define np =
p0n0 + p1n1. We have

L(np) = max
q≥0

D(np, q) = max
q≥0

{
p0D(n0, q) + p1D(n1, q)

}
≤ p0 max

q≥0

{
D(n0, q)

}
+ p1 max

q≥0

{
D(n1, q)

}
= p0L(n0) + p1L(n1).

Thus, we see that L(n) is a convex function.

We consider the continuity of L(n). Firstly, it is proven that n 7→ Λr(n) is a
continuous function for nr > 0, see [15, Lemma A.3]. Thus each summand, r, in the
above expression is continuous for nr > 0. However, the case where nr = 0 remains.
Since Λr(n) ≤ Cmax and by bound (7.7) proven in Lemma 5.4,

(7.1) nr log
nr

Cmaxws
≤ nr log

nr
Λr(n)ws

≤ nr log
wmax

Cminws
.

Thus, limnr→0 nr log nr

Λr(n)ws
= 0, which means that the summands of L(n) are also

continuous at nr = 0. Therefore, L(n) is continuous because it is the sum of contin-
uous functions.

Finally, we note that the set of feasible values of n belongs to a compact set, so
the set of optimal solutions is bounded and since L(n) is convex continuous the set of
optimal solutions is also closed and convex.



18 J. Anselmi and N.S. Walton

Proof. [Proof of Lemma 5.3] a) The function L(n) is the solution to the concave
optimization

L(n) = min −
∑
r

nr log

(
Λrws
nr

)
s.t.

∑
j∈r

Λr ≤ Cj , j ∈ J over Λr ≥ 0, r ∈ R.

We calculate the dual of this optimization. After adding slack variables zj and La-
grange multipliers qj , the Lagrangian of this optimization is

(7.3) −
∑
r

nr log
(Λrws

nr

)
−
∑
j

qj

(
Cj −

∑
r:j∈r

Λr − zj
)
.

We minimize such Lagrangian. As the slack variables are positive, it is clear that a
finite solution qj must be positive for each j ∈ J , and by complementary slackness
qjzj = 0. Differentiating with respect to Λr, we see that the Lagrangian of this
optimization is minimized when

(7.4)
nr
Λr

=
∑
j∈r

qj .

Substituting this optimality condition back in to the Lagrangian (7.3), we see that
the dual of the optimization is

max
q≥0

∑
r

nr log
(∑
j∈r

qj

)
−
∑
j

qjCj +
∑
r

nr −
∑
s

ws logws.

The primal problem, (7.2), satisfies Slater’s condition and so is Strong Lagrangian.
Hence, (5.2) holds.

b) We first place some bounds on the dual formulation proved above. The partial
derivative of the objective, with respect to qj for any j ∈ r, is

(7.5)
nr∑
j∈r qj

− Cj .

For an optimal choice of q this quantity must be negative or equal to zero if qj > 0.
However, if we take q̃ such that

(7.6)
∑
j∈r

q̃j >
wmax

Cmin

then, (7.5) is negative. Thus, it must be that

(7.7)
nr

Λr(n)
=
∑
j∈r

qj ≤
wmax

Cmin

The equality holds by the optimality condition (7.6) holding. for the optimal q. The
lowerbound is achieved by noting that Λr(n) ≤ Cmax for all n and r. For each s,
there must exists some route such that nr ≥ ws

|s| and certainly Γs(n) ≥ Λr(n) for each

r ∈ s. Applying this to the above upper-bound derived, we have that

ws
|s|Γs(n)

≤ nr
Λr(n)

≤ wmax

Cmin
.
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Rearranging gives, Γs(n) ≥ Cminws

|s|wmax
=: Γmin, as required.

Proof. [Proof of Lemma 5.5] a) By the definition of Gs(ws) (see (4.6)), we have

Gs(ws) = max
Γs≥0

{ws log Γs − Us(Γs)} = max
γs∈R

{wsγs − Us(eγs)}(7.8)

Thus, Gs(ws) is the Legendre-Fenchel transform of the convex function Us(e
γs) and

thus it is convex. The objective wsγs − Us(e
γs) is concave provided the function

Us(e
γs) is convex, which is equivalent to our assumption that ΓsU

′
s(Γs) is increasing.

Differentiating this objective, we see that optimality is achieved by the Γs satisfying
ws = ΓsU

′
s(Γs). In other words, the optimum for Gs(ws) is achieved by Γs = gs(ws).

Next, we see that we can bound the derivative of Gs from the right as follows

Gs(ws + h)−Gs(ws)
= (ws + h) log gs(ws + h)− Us(gs(ws + h))− ws log(gs(ws)) + Us(gs(ws))

≥ (ws + h) log(gs(ws))− Us(gs(ws))− ws log(gs(ws)) + Us(gs(ws)) = h log(gs(ws)).

By a symmetric argument we have h log(gs(ws+h)) ≥ Gs(ws+h)−Gs(ws). Dividing
by h and by the continuity of the function gs, we have from that these bounds give

(7.9) G′s(ws) = log gs(ws).

This gives the derivative of Gs. Next, recall that Gs(ws) is the Legendre-Fenchel
transform of the convex function Us(e

γs), see (7.8). Thus, Legendre-Fenchel duality
holds and we can see that

Us(e
γs) = max

ws

{wsγs −Gs(−ws)} .

And so −Us(Γs) = minws
{Gs(ws)− ws log Γs}. This proves part a).

b) We proceed in a similar manner to Lemma 5.1. We have

H(n) =
∑
r∈R

nr log nr −
∑
r∈R

nr log Λr(n)−
∑
s∈S

ws logws +
∑
s∈S

Gs(ws).

Differentiating the first two terms using standard arguments, differentiating the third
term as in Lemma 5.1, and using (7.9), we get (5.11).

Proof. [Proof of Lemma 5.6] We minimize H(n). For this we consider the following
sequence of equalities

min
n≥0,w≥0

H(n) subject to
∑
r∈s

nr = ws, s ∈ S

= min
w≥0

min
n≥0:∑

r∈s nr=ws

min
Λ,Γ≥0:∑
r∈s Λs=Γs∑
r3j Λr≤Cj

∑
r∈R

nr log
nr
wsΛr

+
∑
s∈S

Gs(ws)

= min
Λ,Γ≥0:∑
r∈s Λs=Γs∑
r3j Λr≤Cj

min
w≥0

min
n≥0:∑

r∈s nr=ws

∑
s∈S

ws
∑
r∈s

nr
ws

log
nrΓs
wsΛr

+
∑
s∈S
{Gs(ws)− ws log Γs}

= min
Λ,Γ≥0:∑
r∈s Λs=Γs∑
r3j Λr≤Cj

min
w≥0

∑
s∈S
{Gs(ws)− ws log Γs}
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= min
Λ,Γ≥0

∑
s∈S

Us(Γs) subject to
∑
r3j

Λr ≤ Cj , j ∈ J ,
∑
r∈s

Λs = Γs, s ∈ S.

In the first equality above, we introduce the optimization taken over Λ; in the second
equality, we reorder the minimization and add and subtract relevant terms; in the
third, we minimize the above relative entropy term to zero; in the forth we take the
Fenchel transform of Gs(ws) to obtain Us and the required optimization.

The function

(7.10) H̃(n,w,Λ) =
∑
s∈S

∑
r∈s

nr log
nr
wsΛr

+
∑
s∈S

Gs(ws).

is convex over (Λr : r ∈ R) and (nr : r ∈ R) and (ws : s ∈ S) satisfying
∑
r∈s nr = ws,

for s ∈ S. Minimizing over Λ satisfying network capacity constraints
∑
r3j Λr ≤

Cj , j ∈ J , we arrive at the proportionally fair optimization, Λ(n), i.e. H(n) =
H∗(n,w,Λ(n)). Minimizing over nr (as in the third equality above) we obtain the
condition

(7.11)
nr
ws

=
Λr
Γs

for each r ∈ R (with r ∈ s) such that nr > 0. Further minimizing over ws we obtain
the condition

(7.12) gs(ws) = Γs(n).

Together we see that the minimality condition for H̃ and thus for H are (5.13) and
(5.14).


