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Abstract—Burst-Buffers are high throughput, small size inter-
mediate storage systems typically based on SSDs or NVRAM
that are designed to be used as a potential buffer between the
computing nodes of a supercomputer and its main storage system
consisting of hard drives. Their purpose is to absorb the bursts
of I/O that many HPC applications experience (for example
for saving checkpoints or data from intermediate results). In
this paper, we propose a probabilistic model for evaluating the
performance of Burst-Buffers. From a model of application and
a data management strategy, we build a Markov-chain-based
model of the system, that allows us to quickly answer issues about
dimensioning of the system: for a given set of applications, and
for a given Burst-Buffer size and bandwidth, how often does the
buffer overflow? We also provide extensive simulation results to
validate our modeling approach.

I. INTRODUCTION

Solving the bottleneck of I/O is a major point in current
HPC systems. This point is especially striking when observ-
ing their recent evolution. For instance, when Los Alamos
National Laboratory moved from Cielo to Trinity, the peak
performance moved from 1.4 Petaflops to 40 Petaflops (×28)
while the I/O bandwidth moved to 160 GB/s to 1.45TB/s (only
×9) [1]. The same kind of results can be observed at Argonne
National Laboratory when moving from Intrepid (0.6 PF, 88
GB/s) to Mira (10PF, 240 GB/s) and to Aurora (expected
180PF and 1TB/s) [2]. Indeed, the main storage technology
is still based on hard drive, that have shown a better capacity
to scale up in terms of storage capacity than speed.

On the other hand, the usage of HPC systems makes I/O
more and more important. First, in the framework on the
convergence between HPC and BigData [3], HPC systems are
more and more used to run BigData applications, that require
much more I/O bandwidth than traditional HPC applications.
The main characteristic of BigData workload is that they
are dominated by read operations. Second, the MTBF (Mean
Time Between Failures) of HPC systems is decreasing [4],
[5] and Checkpoint/Restart strategies are used to ensure the
reliability of computations over a failure prone system. Con-
trarily to BigData applications, Checkpoint/Restart strategies
consume a lot of I/O bandwidth for storing checkpoints,
and are dominated by write operations. An important feature
of checkpoints is that in general, each new checkpoint for
an application can erase the previous one, so that not all
checkpoints have to be ultimately saved to the slow disk.
Third, HPC applications themselves consume a lot of I/O
bandwidth (see Section II-C). They typically follow a quasi-
periodic pattern, with an alternance of compute and I/O phases,

that cannot be overlapped. As in the case of checkpointing,
such HPC applications mostly write data to the disk, and due
to their bursty nature, they are known to generate interference
and idle times at the I/O level [6] when several applications
attempt to store their results simultaneously.

In order to cope with the limited I/O bandwidth of HPC
system, Burst-Buffers have emerged as promising solution [7],
[8], [9]. On the technological side, the use of NVRAM or
SSDs makes it possible to achieve much higher bandwidth than
hard disks. Due to their high cost and limited capacity, Burst-
Buffers are not expected to replace hard-drives, but rather
act like a potential intermediate storage layer between the
computing nodes and the hard drive storage. Such a layer can
be used both to increase data locality and to cope with I/O
bursts, using their higher I/O bandwidth to avoid interferences
and slowdowns.

There is still no clear consensus on Burst-Buffer architecture
(see Section II-A) to know whether they should be centralized
or distributed over the platform, and whether they should act as
a cache between the computing nodes and the storage system
or if they could be bypassed by the applications. In this paper,
we consider the simplest model where the Burst-Buffer acts
as a potential intermediate centralized layer, with a higher I/O
bandwidth but a smaller capacity than the hard disk storage
system.

Our goal is to propose a probabilistic model for applications,
that is amenable to theoretical analysis based on Markov
chains and that provides an estimation of the I/O contention
as a function of the size of the Burst-Buffer at a very
reasonable cost. The rest of this paper is organized as follows.
In Section II, we present the related work on Burst-Buffer
architecture, bandwidth allocation and HPC applications mod-
els. Then, we present in Section III the probabilistic model
that will be used throughout the paper. In Section IV, we
propose two methods to evaluate I/O bandwidth overflows
respectively based on the use of (weighted) Chernoff bounds
and on an ad-hoc algorithm. Then, we prove in Section V that
a simple Markov chain can be used to evaluate the idle time
induced by Burst-Buffer overflow and we provide simulation
results to study the important parameters of the Burst-Buffers.
In Section VI, we validate the probabilistic model introduced
in Section III by comparing the results of the Markov chain
approach with those of a discrete event simulator based on
a more sophisticated applications model. At last, we prove
in Section VII that the Markov chain approach can be used
to evaluate other Burst-Buffer management strategies, such as



those recently introduced to limit transfers between the Burst-
Buffer and the storage system. We give a complete summary
of assumptions and results in Section VIII and we propose
concluding remarks in Section IX.

II. RELATED WORK

A. Burst-Buffer Architectures and models

There are many implementations of Burst-Buffers. The two
most studied characteristics are the location of the buffers and
whether the buffers are shared between multiple applications.

Typically, Burst-Buffers can be located between the com-
pute nodes and the Parallel File System (PFS). This is the
case of DDN IME [7], [10] and Cray DataWarp [8], [11], [9].
In this pseudo-centralized architecture, the Burst-Buffers are
often colocated with the I/O nodes. The management strategy
can then differ. Mubarak et al. [11] study the case where the
buffers are shared between the different applications on the
platform and used to accelerate transfers and to prevent I/O
congestion. On the contrary, in Schenck et al. [10] and Daley
et al. [9], applications decide the size of the buffer that should
be dedicated to them.

Another solution is a distributed version of Burst-Buffers
where the buffers are allocated close to the compute
nodes [12], [13]. A solution consists in allocating the dis-
tributed buffers to the applications using the compute nodes
close to buffers [14]. However, other strategies focus on how to
share them between the different applications [11], [12], [13].
This is particularly true in the context of fault-tolerance, where
using a buffer on a different node can allow the implementation
of hierarchical checkpointing strategies that provide more
resilience than in-node buffer strategies [13]. Furthermore, in
the case where, because of their costs, the number of buffers
in the machine has to be limited, one must choose on which
node they should be deployed and between which subset of
applications they should be shared.

In this paper, we focus on the pseudo-centralized model,
where Burst-Buffers are shared between applications. We use
a model of architecture similar to the one shown by Schenck et
al. [10]. We consider that applications are running on Compute
Nodes. They use or generate data (also called I/O in this work)
that has to be sent to the Parallel File System. This is done by
sending their data to the I/O nodes where Burst-Buffers are
located.

More precisely, the architecture we consider is depicted in
Figure 1.
• The I/O nodes communicate with the PFS using a maxi-

mum bandwidth B.
• The Burst-Buffers are located next to the I/O nodes, their

total size is denoted by S (in GB) and they communicate
with the I/O nodes with a bandwidth BBB.

B. Algorithms to deal with Burst-Buffers

When it comes to using Burst-Buffers, several solutions
have been proposed. We present and discuss the most common
ones.

Parallel File System
(PFS)

IO Nodes Burst Buffers
(size S)

Compute Nodes

B

BBB

Figure 1: Description of the pseudo-centralized platform
model.

A natural idea is to use Burst-Buffers as a cache to im-
prove the I/O-performance of applications [10]. For instance,
DDN [7] announces bandwidth performance 10-fold that of
PFS using their Burst-Buffers. The idea is to move the I/O to
the Burst-Buffer as a temporary stage between compute nodes
and the Parallel File System (whether the data is incoming
or outgoing). Thanks to the higher bandwidth of the Burst-
Buffers, this has the advantage of improving the I/O transfer
time while pipelining the (slowest) phase of sending/receiving
data from the PFS with the compute phase of the application.
However, as was noted by Han et al. [15], this idea is not
viable, (i) Burst-Buffers are based on technologies that are
extremely expensive with respect to hard drives, (ii) they are
currently based on SSD technology, that is known to have a
limited rewrite lifespan [15]. Thus, the large number of I/O
operations in HPC applications would decrease their lifespan
too fast. This is why we do not consider this solution in this
work.

The second natural idea proposed in the literature is to use
Burst-Buffers to prevent I/O congestion [16], [17] while main-
taining their lifespan. To achieve this goal, the applications use
the direct link to the PFS (see Figure 1) when its bandwidth
B is not exceeded. When the bandwidth is exceeded by the
set of transfers, then the higher bandwidth of the Burst-Buffer
is used to complement the bandwidth of the PFS. This is the
solution advocated by DDN in [7]. The intuition behind this
strategy is that the average use of PFS bandwidth is usually
small enough, but that Burst-Buffers are crucial to deal with
applications’ (simultaneous) bursts. This corresponds to the
model depicted in Figure 1 that will be used throughout this
paper.

Finally, a large part of the literature on Burst-Buffers shows
how to use them with a specific application workflow [9], [10].
Specifically, they consider systems where applications have
dedicated and pre-allocated Burst-Buffers, and where the ap-
plication can explicitly control its data transfers and the use of
the Burst-Buffer. This must to be done for each application and
is very platform dependent. In practice, only few applications
have the human-power to implement this. By opposition, our
work is only architecture dependent and does not require any



additional work from applications developers. However, we
believe our results can also be used by applications developers
if they want to estimate the size of Burst-Buffers that they
would need based on their application caracteristics.

C. Application Model

Many recent HPC studies have independently observed
patterns in the I/O behavior of HPC applications. The
quasi-periodicity of HPC applications has been well docu-
mented [18], [19]. HPC applications alternate between com-
putation and I/O transfer phases, this pattern being repeated
almost identically over time.

Hu et al. [20] summarized the four key characteristics of
HPC applications observed in the literature.

1) Periodicity: Applications alternate between compute
phases and I/O phases. Furthermore they do so in a quasi
periodic fashion.

2) Burstiness: In addition to the observed periodicity, some-
times, short I/O bursts occur.

3) Synchronization: I/O transfers of an application are per-
formed in a synchronized way between the different
parallel processes.

4) Repeatability: The same jobs are often run many times
with different inputs, hence their compute-I/O pattern
of an application can be reasonably predicted before
execution.

When modeling applications, most Burst-Buffer related
work use workload models based on these patterns [17], [15],
[11]. In addition to this, Mubarak et al. [11] introduce a
random background traffic representing HPC workloads such
as graph computations and linear algebra solvers, based on the
work of Yuan et al. [21].

III. MODEL

We consider a large computing platform, and we focus on
modeling and analyzing the behavior of the storage system.
We will thus ignore the computing nodes of the platform, and
simply consider that we have a (fixed) set of n applications Ai
currently executing on the platform. We model the long-term
storage system as a single file server with input bandwidth B
(in a real system with several file servers, B would represent
their aggregate bandwidth). In addition to this file server, the
platform contains a Burst-Buffer, whose input bandwidth is
significantly larger, and whose size is S. Figure 1 provides a
schematic view of the model we consider.

Following the related work discussed in Section II-C, ap-
plication Ai alternates computation and I/O phases. When it
performs computations it does not induce any load on the
storage system. When it sends intermediate results to the disks,
it does so with a fixed bandwidth denoted by bi. We do not
assume that the applications follow a perfect periodic pattern.
In the simulations proposed in Section VI, we add a certain
amount of noise to model pseudo periodicity: for a phase of
expected duration Ti, we actually set its duration to a value
chosen uniformly at random in [(1− ε)Ti, (1 + ε)Ti]. Finally,
we denote the quasi-period of application Ai by di, and the

Table I: Characteristics of the APEX applications data set.

Workflow EAP LAP Silverton VPIC
Number of Instances 13 4 2 1

bi (GB/s) 160 80 160 160
di Period (s) 5671 12682 15005 4483

Checkpoint time (s) 20 25 280 23,4
pi(×10−3) 3.51 1.97 18.7 5.11

proportion of time spent doing data transfers by pi, so that
the expected duration of a data transfer for application Ai is
pidi (and the phases where only computation happens have an
expected duration of (1− pi)di). Note that we do not specify
whether an application overlaps the communication with some
computation or not.

To obtain realistic values, we concentrate on the workflows
described in the APEX report [22]. At LANL, most of the load
comes from 4 applications, whose characteristics are given
in Table I. To obtain the checkpointing period (not provided
in [22]), we rely on theoretical works [23] to determine
the optimal checkpointing period from the MTBF and the
checkpointing time.

In order to obtain theoretical results, we model application
data transfers with a random process. To achieve this, we
omit the quasi-period di in the model. More specifically, we
consider discretized time units and we assume that during
each of these time units, application Ai sends data with
probability pi (with bandwidth bi). In order to have a time
unit corresponding to the caracteristic size of the system, we
set it as the average value of the data transfer times (pidi) in
what follows.

Therefore, in our model, all applications share a common
time unit, and there is no correlation (no memory) between
what happens at time step t and t + 1. This assumption is
of course crucial to build a Markov chain model. However, if
the length of a data transfer for Ai is much longer than the
time unit, the fact that Ai is involved in a communication at
time t strongly influences the probability that it is involved in
the same communication at time t+ 1. On the other hand, if
the period of the pattern for Aj is much shorter than the time
unit, then the I/O bandwidth consumed during one time unit
with our model is very imprecise, since it is either sending
or not sending during the whole time unit, whereas such an
Aj ctually performs several communication and computation
phases. For this reason, we assume in this work that all
applications share a similar characteristic time.

In order to validate the ability of the model to predict the
load of the Burst-Buffer, we rely on simulations based on a
discrete event simulator based on the actual characteristics of
the applications, both on synthetic data and on the trace based
on [22]. In this trace, the time period varies in a ratio of about
3. In Section VI, we consider time periods that varies in a ratio
of 10 and show that this assumption is valid to predict bneeds,
which validates the prediction capacity of the Markov-based
model.

An important quantity in our model is the expected load



EXPECTEDLOAD, defined by EXPECTEDLOAD =
∑
i pibi.

It represents the average bandwidth requirement over a long
period of time. If many applications send data at the same
time and exceed the bandwidth B to the PFS, the excess can
be sent to the Burst-Buffer, and later on sent back to the
disk when some bandwidth is available. If the Burst-Buffer
is full, this will induce some sort of contention and idle time,
which is what we try to avoid. Section V presents a model
of the system behavior to analyze the waste implied by these
overflow events.

IV. INSTANTANEOUS LOAD ESTIMATION

With the model of Section III, since the expected load
EXPECTEDLOAD is given by EXPECTEDLOAD =

∑
i pibi and

the available bandwidth is given by B, we can immediately
notice that if EXPECTEDLOAD > B, the I/O bandwidth will
not be able to cope with all the demands and the Burst-
Buffer, whatever its size, will eventually be saturated. To cope
with this situation, we will introduce in Section V a delay
mechanism where the applications freeze and stop sending
data to the Burst-Buffer during one time unit so as to avoid
Burst-Buffer overflow.

In this section, we are rather interested in estimating the
probability distribution of the INSTANTLOAD of I/Os, where
INSTANTLOAD =

∑
i∈A(t) bi denotes the bandwidth required

by the set A(t) of applications involved in a transfer at instant
t. We discretize the possible values of the bandwidth with
respect to B. More precisely, let us set B = 100 and let us
assume that all bi values are integer values. This corresponds to
rounding the value bi to the closest integer and induces a loss
of precision of at most 1%. Given the difficulty to precisely
estimate the I/O bandwidth required by an application Ai
when transferring data to the disk, we consider that this
approximation is smaller than the noise of the measurements.

Our goal is in particular to detect when it exceeds the
capacity of I/O bandwidth to the Burst-Buffer BBB. We pro-
pose two different approaches to achieve this goal. We rely in
Section IV-A on generalizations of Chernoff bounds to the case
of a weighted sum of independent variables, and we propose
in Section IV-B an ad-hoc strategy to estimate precisely
the discretized probability distribution, and we compare both
strategies in Section IV-C.

A. Chernoff based bounds

In order to analyze the probability distribution of INSTANT-
LOAD, let us denote by Xi the random variable indicat-
ing whether Ai is sending I/Os. We assume that Xis are
independent random variables, what is in general the case
if workflows and coupled codes are considered as distinct
applications. Using the model described in Section III, we
have Pr(Xi = 1) = pi and Pr(Xi = 0) = (1 − pi) and the
random variable X which represents the instant load is given
by X =

∑
i biXi and its expected value is E(X) =

∑
i bipi.

We cannot apply directly Chernoff bounds since X is a
weighted sum, but several extensions have been proposed in
the literature to deal with weighted sums (see [24], [25], [26],

[27]). Theorem 1 provides a way to estimate the probability
that the instant load differs by an additive value λ from its
expected value.

Theorem 1 ([25]). Let X1, . . . , Xn be independent random
variables such that Pr(Xi = 1) = pi and Pr(Xi = 0) =
(1 − pi) and let X =

∑
i biXi. Let us set ν =

∑
i b

2
i pi and

b = max{b1, . . . , bn}. Then,

Pr(X ≤ E(X)− λ) ≤ exp

(
−λ

2

2ν

)
and

Pr(X > E(X) + λ) ≤ exp

(
− λ2

2(ν + bλ/3)

)
.

B. Ad-Hoc Estimation

Chernoff bounds are known to model well the asymptotic
behaviors, but due to their simplicity and generality, they
fail to provide useful estimations in practical cases as they
overestimate the probability that X differs from its expected
value. Therefore, we propose in this section an ad-hoc way to
estimate the probability distribution of X .

We describe in Algorithm 1 the code used to compute the
probability distribution DIST of X =

∑
i biXi, where DIST(k)

is the probability that A1, . . . ,An contribute to exactly k. To
compute DIST, we add applications Ai one after the other
and we update at step i the probability distribution using only
applications A1, . . . ,Ai. The size of vector DIST is

∑
i bi, i.e.

the maximal possible instant value which is upper bounded by
nB = 100n, such that the overall complexity of Algorithm 1
is 100n2, where n denote the number of applications and is
therefore expected to be very small (n = 20 is already large
in practical settings), so that computing DIST is immediate.

Algorithm 1: FINDDISTRIBUTION(A1, . . . ,An)
Input: The characteristics of A1, . . . ,An

Output: DIST, such that DIST(k) = Pr(
∑

biXi = k)
1 DIST is a initialized with zeros and its size is

∑
bi ;

2 foreach Ai do
3 foreach k do
4 DIST(k) = (1− pi)DIST(k) + piDIST(k − bi) if

k ≥ bi ;
5 DIST(k) = (1− pi)DIST(k) if k < bi ;
6 end
7 end
8 return DIST

C. Estimating the distribution

We can use the Chernoff bounds proposed in Section IV-A
to estimate the distribution of the instantaneous load. Indeed,
let us set
• fu(x) = exp

(
− (

∑
bipi−x)2
2ν

)
if x ≤

∑
bipi and fu(x) =

1 otherwise ;
• fl(x) = exp

(
− (x−

∑
bipi)

2

2(ν+b(x−
∑
bipi)/3)

)
if x ≥

∑
bipi and

fl(x) = 0 otherwise.

Then, ∀x, fl(x) ≤ Pr(X ≤ x) ≤ fu(x).
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Figure 2: Comparison of distribution estimations for different
values of pmax, EXPECTEDLOAD = 100.

To estimate the precision of these inequalities, we have
compared them to the result provided by Algorithm 1 on some
randomly generated set of applications. We target an expected
load of M = 100(= B) and we generate applications in the
following way. We add applications one by one by generating
the values pi uniformly between 0 and pmax and the values
bi values uniformly between 0 and 1 until the expected load
is reached. Then, we rescale the pis so as to achieve exactly
M = 100(= B). Figure 2 provides the comparison of the
obtained distribution estimations for different values of pmax.
We can see that the Chernoff bounds are always correct, but
very imprecise. Since computing the exact distribution with
Algorithm 1 is in practice very fast, we will rely on this
algorithm in the rest of the paper.

V. BURST-BUFFER LOAD ESTIMATION

In Section IV-B, we proposed Algorithm 1 to compute the
probability DIST(k) of having INSTANTLOAD = k ∀0 ≤ k ≤∑
bi. As shown in Section IV-C, DIST(k) can be used directly

to evaluate the probability of exceeding the I/O bandwidth to
the disk. In Section V-A, we use DIST in order to evaluate
the probability of exceeding the capacity of the Burst-Buffer,
using a Markov Chain to model the load of Burst-Buffer.

A. Markov Chain Model

In this section, we propose to model the occupation of the
Burst-Buffer when using Algorithm 2.

Following the model described in Section II-B, Algo-
rithm 2 transfers as much data as possible to the disk. If
INSTANTLOAD ≤ B, then the Burst-Buffer is emptied as
fast as possible, provided that the I/O bandwidth to the
disk B is not exceeded (see Section III and Figure 1). If
INSTANTLOAD > B, then the occupation of the Burst-Buffer
increases. If the capacity of the Burst-Buffer is exceeded, then
all transfers are stopped for one time unit so as to empty the
Burst-Buffer at rate B.

Algorithm 2: ALLOCATETRANSFERS

Input: The set of active applications Ak1 , . . . ,Akl ,
the load of the Burst-Buffer LOAD
Output: The set of transfers to the disk and to the

Burst-Buffer
1 if

∑l
1 bki ≤ B then

2 Transfer
∑l

1 bki from the computing nodes to the disk ;
3 Transfer min(LOAD, (B −

∑l
1 bki)) from the

Burst-Buffer to the disk ;
4 end
5 else
6 Transfer B from the computing nodes to the disk ;
7 if LOAD +

∑l
1 bki −B ≤ S then

8 Transfer
∑l

1 bki −B from the computing nodes to
the Burst-Buffer;

9 end
10 else
11 Transfer S − LOAD from the computing nodes to

the Burst-Buffer;
12 Stop all applications until the transfer is over ;
13 During each time unit, transfer B from the

computing nodes to the disk ;
14 Complete with Burst-Buffer data at the end ;
15 end
16 end

The occupation of the Burst-Buffer when using Algorithm 2
can be easily modeled by a Markov Chain [28]. Let us denote
by Yj , 0 ≤ j ≤ S the “normal” state of the chain when the size
of Burst-Buffer is exactly j and let us define

∑
i bi additional

“overflow” states Yj , S+1 ≤ j ≤ S+
∑
i bi that correspond to

the states where the capacity of the Burst-Buffer is exceeded.
Using DIST, we can compute the probability to move from

State Yj to State Yl, ∀ 0 ≤ j, l ≤ S +
∑
i bi.

When in normal state Yi, i ≤ S, if INSTANTLOAD = k,
then

• If i+ k ≤ B, then the Burst-Buffer becomes empty and
we jump to state Y0.

• If i+ k−B ≤ S, then we jump to normal state Yi+k−B .
• If i+k−B > S, then we jump to overflow state Yi+k−B .

When the chain is in an overflow state Yi, i ≥ S, then
applications are kept idle for one time unit and the Burst-
Buffer is emptied at maximal rate, so that we jump to (normal
or overflow) state Yi−B . Therefore, the probability Pj,l of
transition between state Yj and state Yl is defined as follows:

• If 0 ≤ j ≤ S and 1 ≤ l ≤ S +
∑
i bi, then Pj,l =

DIST(l − j +B).
• If 0 ≤ j ≤ B, then Pj,0 =

∑B−j
k=0 DIST(k).

• If S + 1 ≤ j ≤ S +
∑
i bi, then Pj,j−B = 1.

B. Steady State Load Estimation

The Markov chain Y introduced in Section V-A can be used
to estimate the idle time induced by Algorithm 2. Let us first
prove with Theorem 2 that Y has a stationary probability π.

Theorem 2. There exists a unique stationary distribution π
for the Markov chain Y .



Proof. Since pi < 1 for all i, we have DIST(0) > 0. This
implies that each state Yi has a non-zero probability to jump
to state Ymax(i−B,0), and thus that state 0 is accessible from
any state Yi. The Markov chain thus has only one final class
(the one containing state 0). This implies that Y has one and
only one stationary distribution. Additionally, since P0,0 > 0,
this class is aperiodic and this distribution can be obtained as
the limit of πl = P lπ0, independently of π0.

The size of the transition matrix P is S+
∑
bi×S+

∑
bi

and π is the solution of the linear system π = π ∗P . In all the
experiments that follow, since we set B = 100 in Section IV-B,
the size of P is therefore of a few hundreds. Moreover, in all
our experiments, we use an iterative algorithm πl = πl−1P
that always converged in less than 10 iterations. Therefore, the
computation of the stationary distribution is extremely fast.

Theorem 3. The idle time induced by Algorithm 2 is given by∑
k>S π(k).

Proof. π(k) represents the probability of being in state Yk.
For k ≤ S, the load of the Burst-Buffer is smaller than its
size S, and no idle time is induced. On the other hand, states
Yk, k > S correspond to an overflow of the buffer. In this
case, Algorithm 2 stops all transfers from the applications with
probability 1 in order to empty the Burst-Buffer for one time-
unit. Therefore, the fraction of idle time corresponds to the
probability of being in a state Yk, k > S and is therefore
given by

∑
k>S π(k).

C. Idle Time Prediction

This section presents the results obtained with the Markov
chain model presented above. We generate applications in the
same way as in Section IV-C and we observe the resulting
stationary distribution. We fix the bandwidth B of the disk
to 100, and we vary the expected load M of the system, by
considering different values of α = M

B . As a reminder, once M
is fixed, we add applications by picking uniformly at random
pi ∈ [0, pmax] and bi ∈ [0, B] until

∑
i bipi ≥ M and then

we rescale the pis so that
∑
i bipi = M = αB. Small values

of α result in an underloaded system in which the buffer does
not fill very often. On the other hand, values of α larger than
one mean that idle times are required even in presence of a
very large buffer in order to allow enough time to write to the
disks.

Figure 3 shows the resulting proportion of idle time (see
Theorem 3) for different values of pmax and α. We can observe
that obtained results do not strongly depend on pmax. and
that, as expected, the idle time decreases with the buffer size,
converging to 0 for values of α below 1, and to a positive
value for α above 1.

VI. MODEL VALIDATION AND SIMULATIONS

A. Comments on the probabilistic model

In this section, we aim at evaluating the influence of the
application model described in Section III on the quality of the
prediction of the idle time induced by Algorithm 2. Indeed, we
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Figure 3: Proportion of idle time as a function of buffer size,
for different values of pmax and α.

have proved in Section V that this model is theoretically and
numerically tractable since a simple Markov chain enables to
compute the idle time at low computational cost. Nevertheless,
the model of Section III is not strictly equivalent to the models
proposed in Section II-C. Indeed, it is generally assumed that
HPC applications follow a quasi periodic pattern alternating
compute and communication phases and that the rate of
emission is proportional to the number of I/O nodes and is
therefore constant over time. Our model captures several cru-
cial characteristics of the quasi periodic model, (i) alternating
communication and computation phases, (ii) the quasi periodic
pattern modeled by pi probability of I/O communication (iii)
the constant bandwidth bi used by a given application Ai when
performing I/Os. Nevertheless, as underlined in Section III, the
Markov-based model imposes to choose a common time unit
for all applications and induces more randomness, what may
induce modeling errors. It is therefore crucial to validate our
probabilistic model against a more realistic (but theoretically
intractable) model using a discrete event simulator that will
be presented in Section VI-B.

B. Discrete Event Simulator

In order to validate the ability of the application model
presented in Section III to predict the idle time, we build a
discrete event simulator. The platform model is the same as
the one introduced in [10] and described in Figure 1, and is
characterized by the I/O bandwidth B between the processing
nodes and the disks, that is shared by the transfers between
the Burst-Buffer and the disk, so that the overall bandwidth
to the disk is bounded by B.



On the application side, simulations rely on a more sophisti-
cated model. Each application is characterized by a time period
di, a probability of sending I/Os pi and a used bandwidth bi,
and we add another parameter u that will be used to add noise
to the pattern of Ai. More precisely, a pattern for Ai is built
as follows
• Ai computes during (1 − pi)dix where x is chosen

uniformly at random in [1− u, 1 + u] at each computing
burst,

• Ai sends data at rate bi during pidix where x is chosen
uniformly at random in [1 − u, 1 + u] at each burst of
I/Os.

Using above model, we generate a pattern that is almost
periodic (exactly periodic if u = 0), and the quasi-period of
Ai is different for each application, so that the model is close
to what has been observed in HPC systems (see Section II-C
and references therein).

Our discrete event simulator is described in Algorithm 3.
compi is a boolean value that indicates whether the next burst
for Ai is a I/O (compi = 0) or a compute (compi = 1) burst.

Algorithm 3: Discrete Event Simulator
Input: The set of active applications Ak1 , . . . ,Akl ,
with their characteristics pi, bi and di and their random
starting times ti
a large time bound Tmax, the regularity of bursts length u
Output: The total idle time IDLETIME

1 ∀i, compi = 1 NEXTEVENT = min(t1, . . . , tn) ;
2 while NEXTEVENT ≤ Tmax do
3 i = argmin(t1, . . . , tn) ;
4 Choose x uniformly at random in [1− u, 1 + u] ;
5 if compi == 1 then
6 ti = NEXTEVENT + (1− pi)dix;
7 compi = 1− compi;
8 end
9 else

10 ti = NEXTEVENT + pidix;
11 compi = 1− compi;
12 end
13 Update Burst-Buffer occupation at time ti
14 while Burst-Buffer occupation at time ti ≥ S do
15 Stop all transfers for one time unit;
16 Increase IDLETIME;
17 end
18 end
19 return IDLETIME

C. Model Validation

a) On synthetic data: In order to compare the results
obtained with the Markov chain model to those of the dis-
crete event simulator, we once again generate applications for
different values of pmax and α as was done in Section V-C.
In addition to pi and bi values, we also generate the values
di uniformly at random between some value dmin and βdmin,
where β = 1, 2, 5, 10. β = 1 corresponds to the case where
all applications share the same period, whereas β = 10
models applications with different dynamics. The value of
dmin is chosen in each case so that the expected value of

di is 10. The results are depicted on Figure 4. For each
scenario, we run Algorithm 3 10 times up to Tmax = 1000,
and we show on the plots the confidence intervals for the
mean idle time with a filled ribbon. We can see that our
model is able to predict the behavior of the Idle Time induced
by limited size of the Burst-Buffer, even for large β values.
The Markovian model tends to overestimate the Idle time,
especially in the case when α = 1, i.e. when the load of the
system actually corresponds, on average, to the capacity of the
storage system. This validates the ability of the Markov-based
model introduced in Section III to predict the load of the b.

b) On the APEX trace: We performed simulations using
data presented in [22] for LANL and described in Section III.
Using APEX trace, the expected load is small with respect
to the bandwidth of the system (it corresponds to a value
α = 9%). In order to validate the model into a more stressed
context, we also scaled pi values so as to obtain α = 0.75, 1
and 1.25. The results are depicted on Figure 5. Again, the
idle time predicted by the Markovian model has the correct
behavior, but slightly overestimates the idle time, especially
when α = 1.

VII. LAZY EMPTYING

A. Algorithm

To prevent from the phenomena of Write Amplification [29],
Han et al. [15] consider lazy strategies for emptying the Burst-
Buffer. In particular, they propose to empty the Burst-Buffer
only when its load reaches a certain level. The rationale behind
this is that performing a transfer between the Burst-Buffer
and the disk has a fixed cost that does not only depend
on the transferred data. Therefore, there is a clear interest
in keeping the Burst-Buffer to disk link quiet as often as
possible. Algorithm 4 is based on this idea. If the load of the
Burst-Buffer is smaller than a given THRESHOLD < S, the
Burst-Buffer is not emptied, even if some bandwidth remains
available once the transfers between the computing nodes and
the disk have been allocated.

In this context, we have two conflicting objectives. In-
deed, we are interested in both maximizing the quiet time
of the Burst-Buffer (denoted by QUIET) and to minimize
the idle time induced by Burst-Buffer overflow (denoted by
IDLETIME). Clearly, a high value of THRESHOLD is expected
to make QUIET larger (since we keep the lazy strategy longer),
but also to make IDLETIME larger (since we take more risks
by not emptying the buffer). The details of the algorithm are
presented in Algorithm 4. In order to enforce the properties
of the associated Markov chain (see Section VII-B and The-
orem 4), we keep a (very small probability) of emptying the
Burst-Buffer, even if THRESHOLD < S.

B. Markov Chain associated to Algorithm 4

Similarly to what has been proposed in V-A, it is easy
to associate a Markov chain to Algorithm 4, where state
Y LAZY
j corresponds to a load j of the Burst-Buffer and whose

transition matrix P LAZY is defined as follows
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Figure 4: Comparison of predicted idle times between Markov chain and discrete event simulator – Synthetic Data

0.0

0.1

0.2

0.3

200 400 600 800

S

P
ro

po
rt

io
n 

of
 W

as
te

alpha Original 0.75 1 1.25

Figure 5: Comparison of predicted idle times between Markov
chain and discrete event simulator – APEX data

• If THRESHOLD ≤ j ≤ S and 1 ≤ l ≤ S +
∑
i bi, then

P LAZY
j,l = DIST(l − j +B).

• If 0 ≤ j < THRESHOLD:
– if 0 ≤ l < j then P LAZY

j,l = 0.01× DIST(l − j +B);
– Pj,j = 0.99×

∑B−1
l=0 DIST(l − j +B) + DIST(B);

– if j < l ≤ S +
∑
i bi, then P LAZY

j,l = DIST(l− j +B).
• If S + 1 ≤ j ≤ S +

∑
i bi, then P LAZY

j,j−B = 1.

With above definition, we can easily prove Theorem 4 and
Theorem 5.

Theorem 4. There exists a unique stationary distribution
πLAZY for the Markov chain Y LAZY.

Proof. The difference between Y and Y LAZY
j lies in the

weights only, and not in the structure of the transitions.
Therefore, the proof of Theorem 2 directly applies to The-
orem 4 if we define πLAZY as the solution of the linear system

Algorithm 4: Lazy ALLOCATETRANSFERS

Input: The set of active applications Ak1 , . . . ,Akl ,
the load of the Burst-Buffer LOAD

1 if
∑l

1 bki ≤ B then
2 Transfer

∑l
1 bki from the applications to the disk ;

3 if LOAD ≥ THRESHOLD then
4 Transfer min(LOAD, (B −

∑l
1 bki)) from the

Burst-Buffer to the disk ;
5 end
6 else
7 With probability 0.01, transfer

max(LOAD − (B −
∑l

1 bki), 0) from the
Burst-Buffer to the disk ;

8 end
9 end

10 else
11 Transfer B from the computing nodes to the disk ;
12 if LOAD +

∑l
1 bki −B ≤ S then

13 Transfer
∑l

1 bki −B from the computing nodes to
the Burst-Buffer;

14 end
15 else
16 Transfer S − LOAD from the computing nodes to

the Burst-Buffer;
17 Stop all applications until the transfer is over ;
18 During each time unit, transfer B from the

computing nodes to the disk ;
19 Complete with Burst-Buffer data at the end ;
20 end
21 end

πLAZY = πLAZY × P LAZY.

Theorem 5. The idle time induced by Algorithm 4 is
given by IDLETIME =

∑
k>S π

LAZY(k) and the quiet
time induced by Algorithm 4 is given by QUIET =



∑S
k=0

(
πLAZY(k)×

∑
l≥k P

LAZY(k, l)
)
.

Proof. The states Y LAZY
k with k > S correspond to overflow

states and systematically induce one time unit of idle time.
To estimate QUIET, we sum, for all possible “normal” states
Y LAZY
k , k ≤ S, the probability to not decrease the load of the

Burst-Buffer, i.e. to jump to a state Y LAZY
l , l ≥ k.

C. IDLETIME and QUIET times induced by Algorithm 4

To study the effect of the threshold value on the performance
of the Burst-Buffer, we analyze the results obtained using the
Markov chain model. We generate applications like previously,
and we consider varying values for α, pmax, and for the
threshold ratio (i.e., the ratio between the THRESHOLD value
and the buffer size S). A threshold ratio of 0 is equivalent to
the basic case, and a threshold value of 1 means that the burst
buffer is only emptied when it is full. Results for IDLETIME
time are shown in Figure 6. In addition, we also measure
QUIET time during which the burst buffer is not emptied
(i.e., its occupation either increases or stays the same). This
is shown on Figure 7.
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Figure 6: IDLETIME times for different THRESHOLD values.
Black dots represent the basic case, with threshold 0.

We can see that in most cases, even a small positive value of
THRESHOLD allows to improve the QUIET, except when the
load is high and pmax is also high. In those cases, the Burst-
Buffer is almost continuously kept full due to the constant
arrival of application data, and both strategies behave similarly.
In all other cases, the buffer has a non-zero probability of
having a small enough load for the threshold to be useful. In
many cases however, a too high value of THRESHOLD (above
20 or 40% of the Burst-Buffer size) induces significant cost
on IDLETIME time. Since even a small THRESHOLD brings
a benefit on the QUIET times (and for low load, increasing
THRESHOLD further does not degrade IDLETIME time), we
can see that this lazy strategy indeed has the potential to
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Figure 7: QUIET times for different THRESHOLD values. Black
dots represent the basic case, with threshold 0.

increase the performance of the Burst-Buffer. It is important
to correctly dimension the THRESHOLD value, however a 20%
value appears to be a good safe guess.

VIII. SUMMARY OF RESULTS AND RECOMMENDATIONS

In this section, we provide (i) a summary of the assumptions
underlying the Markovian model and (ii) a summary of the
results and findings that we obtained using it.

In this paper, we focus on using Burst-Buffers solely as a
temporary storage unit for data destined to go on the PFS. The
Burst-Buffer is not used as a cache for the PFS, but as a buffer
when the bandwidth to PFS is saturated. In particular, we leave
for future work the ability to store intermediate data on the
Burst-Buffer, that may or may not be committed to the PFS.
We assume that this is a system-wide process, and that there
is no application-specific strategy to use the Burst-Buffer.

As far as applications are concerned, we assume that their
I/O behavior is (quasi-)periodic (most of the I/O within an
application happens in chunks) and rather predictable, in terms
of quantity of data sent and of freqency of sending periods. In
the Markovian model, however we assume that these sending
periods happen at random times. We also assume that they all
share a similar characteristic time, which is often almost the
case when the sending pattern comes from checkpointing.

To validate the Markovian model, we compared its results
for Idle Time prediction against an ad-hoc discrete event
simulator. We performed the comparison both on synthetic
data covering a wide range of parameters and on an actual
workload trace from LANL.

We prove in this paper that the Markovian model is tractable
and can be used to predict with a very low computing cost
the instantaneous load distribution and the idle time. It can
also be augmented to analyze more sophisticated management
strategies for the Burst-Buffer, like lazy emptying strategies.



In the crucial context of Idle Time prediction, the comparison
with simulations show that the Markovian model, despite its
bursty nature, is in fact able to predict the behavior of the load
of the Burst-Buffer. It therefore provides a low-cost algorithm
to dimension the Burst-Buffer characteristics (size, strategy,
...) on HPC systems.

IX. CONCLUSION

In this paper, we propose a probabilistic model for the use
of Burst-Buffers in the context of organizing the transfers
of a set of HPC quasi-periodic applications. We prove that
this model enables to estimate at low computational cost the
load of the Burst-Buffer under several classical management
strategies. Present work opens several perspectives. First, it
would be of great interest to include in the probabilistic model
the specific characteristics of BigData workload (i.e. the ability
to prefetch data) and checkpointing strategies (i.e. the ability
of removing old checkpoints without writing them eventually
to the disk), that can improve the performance of the Burst-
Buffer. Then, this work makes it possible to evaluate complex
Burst-Buffer management strategies where the Burst-Buffer is
used differently by the different applications. At last, extending
this model to more distributed Burst-Buffer architectures is
also an interesting perspective.
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