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Abstract

In this model of the head direction cells in the limbic areas of the rat brain, the intrinsic
dynamics of the system is determined by a continuous attractor network of spiking neurons.
Synaptic excitation is mediated by NMDA and AMPA formal receptors, while inhibition
depends on GABA receptors. We focus on the temporal aspects of state transitions of the
system following reorientation of visual cues. The model reproduces the short latencies
(80 ms) observed in recordings of the anterodorsal thalamic nucleus. The model makes an
experimentally testable prediction concerning the state update dynamics as a function of
the magnitude of the reorientation angle.
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1 Introduction

Head direction (HD) cells constitute a likely neural basis for the spatial orientation
capabilities of rats. The response of these limbic neurons is tuned to the animal’s
allocentric heading in the azimuthal plane. A HD cell i discharges selectively only
when the head of the animal is oriented in one specific ‘preferred’ direction θi,
regardless of the animal’s ongoing behavior and position [11]. The preferred di-
rections of all HD cells, Θ = { θi | ∀i }, are evenly distributed over 360◦, such that
the HD system could work as an allocentric neural compass. When the head of the
animal remains oriented in a given direction θ, the subpopulation of HD cells with
preferred directions θi ' θ remains active for an indefinite period of time (demon-
strating persistence of the neural coding). During head turns, the active subpopula-
tion of HD cells provides an ongoing neural trace of the orientation of the animal
θ(t), according to the head angular velocity signal ω(t).

HD cells have been observed in a network spanning a variety of structures
centered on the brain’s limbic system, including postsubiculum (PSC), anterodor-
sal thalamic nucleus (ADN), and lateral mammillary nucleus (LMN) [11]. Inertial
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self-motion signals (e.g., vestibular) are likely to converge onto the HD system via
subcortical projections from the dorsal tegmental nucleus (DTN) [2]. DTN receives
vestibular inputs from the medial vestibular nuclei and conveys this information to
LMN and ADN. Visual inputs are likely to enter the HD system via the PSC and
the retrosplenial cortex (which also contains HD cells [11]). The PSC receives af-
ferents from the visual areas 17 and 18, whereas the retrosplenial cortex receives
inputs from higher associative areas such as the posterior parietal cortex [11].

Although the HD cell system has properties resembling those of a compass,
the allocentric coding of HD cells is independent of geomagnetic fields. Rather, the
preferred directions are anchored to visual fixes in the environment: in a neutral set-
ting, rotating a dominant visual cue by an angle ∆θ induces a shift in all preferred
directions such that Θ′ = { θi + ∆θ | ∀i } [11]. Recent electrophysiological studies
by Zugaro et al. [13] have focused on the temporal aspects of the preferred direc-
tion updates in ADN following the reorientation of a visual cue. The experimental
setup consisted of a black high-walled cylinder with a large white card attached to
the inner wall and serving as dominant visual cue. ADN cells were first recorded
in light conditions. Then, in the darkness, the cue card was rotated by 90◦. Finally,
the light was switched back on and the time necessary to the HD system to up-
date its directional representation (i.e., to shift the preferred directions of the HD
cells) was measured. The quantitative results showed rather short update latencies
of approximately 80 ± 10 ms.

The interrelation between allothetic (e.g., visual) and idiothetic (e.g., vestibu-
lar) cues for determining the dynamics of the HD cell system is a relevant issue
for both experimental and computational neuroscience (e.g., [9, 1]). This paper
proposes a continuous attractor network that models the ensemble activity of HD
cells as a gaussian-shaped profile encoding the current head direction. The model is
based upon spiking neurons, which allow us to study the dynamics of the fast update
transient (≈ 80 ms) exhibited by rat HD cells. Earlier models (e.g., [12]) predicted
update latencies of about 200 − 250 ms for the HD representation to be reoriented
by a visual cue. These models employed analog (firing rate) computational units,
which are intrinsically limited for quantitatively describing the temporal properties
of real neural populations.

2 Methods

Global model architecture. Fig. 1(a) shows the global architecture of the model
inspired by the HD circuit of rats [11]. It includes four neural networks modeling
PSC, ADN, LMN, and DTN. The dynamics of the entire system is primarily de-
termined by idiothetic signals (e.g., vestibular) that enter the circuit via DTN and
are integrated over time through the DTN-LMN interaction. This permits head ro-
tations to be tracked based on the head angular velocity signal ω. Visual stimuli
are signaled in the PSC and allow the system to reorient the directional represen-
tation following changes in the visual scene. Extrinsic background noise arrives at
all formal neurons simulating external spontaneous activity. This noise is defined
by a Poisson distribution. In the model, PSC, ADN, and LMN networks consist

2



Postsubiculum
Anterodosal

thalamic
nucleus

Lateral
mammillary

nucleus

Dorsal 
tegmental
nucleus 



Head angular
velocity

Visual
information

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

90

180

270

360

Time (s)

E
nc

od
ed

 h
ea

d 
di

re
ct

io
n 

(d
eg

re
es

)

(b)

0 90 180 270 360
0

5

10

15

20

25

30

35

40

45
M

ea
n 

fir
in

g 
ra

te
 (

sp
ik

es
/s

)

Head direction (degrees)

width

(c)

Figure 1. (a) The model of the HD circuit (adapted from [11]). Arrows and circles indicate
excitatory (NMDA and AMPA) and inhibitory (GABA) synapses, respectively. An attrac-
tor-integrator network is formed by the interaction between LMN and DTN. (b) Rastergram
of the activity of the HD cells in ADN over time (each dot represents one spike). (c) Mean
firing rate of ADN cells computed by averaging over ∆t = 2 s.

of a population of NE = 1000 excitatory directional units with evenly distributed
preferred directions. The intermodule connectivity (see Fig. 1(a) for reciprocal pro-
jections) is such that, for instance, a HD unit j ∈ PSC with preferred direction θj

projects to a cell i ∈ LMN with preferred direction θi according to

wij = W− + (W + − W−) · exp
(

−
(θi − θj)

2

2σ2

)

(1)

where wij is the connection weight, W− and W + are, respectively, the minimum
and maximum weight, and σ is the width of the gaussian.

In the model, a continuous attractor-integrator network is formed based on
the interconnections between LMN and DTN [3].The HD cells within LMN are
connected by recurrent excitatory collaterals such that neurons encoding similar
states (i.e., having similar preferred directions) are strongly coupled. The weight of
the collateral projection between cells i, j ∈ LMN is defined according to Eq. 1.
Global inhibition, necessary to implement the center-surround attractor scheme, is
provided by a population of interneurons ξ ∈ DTN. The intrinsic dynamics of the
LMN-DTN attractor network make the system settle down to stable (self-sustained)
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attractor states, in which subpopulations of HD cells with similar preferred direc-
tions are active while the others remain silent [12, 3].

To integrate non-zero angular velocities (i.e., to shift the stable state over the
continuous attractor state space according to ω), two other subpopulations of in-
terneurons ξcw, ξccw ∈ DTN are considered [3]. The neuronal responses of the
ξcw, ξccw cells are correlated with both head direction θ(t) and angular velocity
ω(t). An interneuron j ∈ ξcw with preferred direction θj receives excitatory af-
ferents from all HD cells i ∈ LMN. The weights of these connections are defined
by Eq. 1 (i.e., gaussian-distributed matching projections). The interneuron j ∈ ξcw

sends inhibitory efferents to all HD cells i ∈ LMN by means of a gaussian weight
distribution centered at θi = θj−δ, with δ = 50◦, (i.e., gaussian-distributed leftward
offset projections). Similarly, each ξccw interneuron receives gaussian-distributed
matching inputs from LMN and sends gaussian-distributed rightward offset inhibi-
tion to LMN. The activity of ξcw and ξccw formal neurons is linearly modulated by
the amplitude of the angular velocity |ω| for ω > 0 and ω < 0, respectively. There-
fore, during clockwise head turns for instance, ξcw cells inhibit the left side of the
LMN hill of activity encoding the current direction θ (i.e., introduce an asymmetry
within the recurrent coupling between HD cells [12, 3]) and yield a clockwise shift
∆θ proportional to |ω|. At any time t, the direction representation θ(t) encoded by
the LMN ensemble activity is transmitted to the other subnetworks of the system,
via the LMN-ADN-PSC excitatory pathway (Fig. 1(a)).

Neuron and synapse model. The formal description of neurons and synapses of the
model is taken from Brunel and Wang [4]. Both HD cells and interneurons are leaky
integrate-and-fire neurons. Synaptic excitation is mediated by NMDA and AMPA
formal receptors, whereas synaptic inhibition is mediated by GABA receptors. The
rationale behind using two different excitatory receptors is the following: AMPA
synapses are rapidly activated and generate fast evoked responses of postsynaptic
neurons. However, their short time decay (τdecay = 2 ms) does not permit an ap-
propriate stabilization of the network activity. On the other hand, the larger time
course of the NMDA receptors (τdecay = 100 ms) is suitable for the stability issue.

Population vector coding. A population vector scheme [8] is employed to recon-
struct the ongoing animal’s heading θ(t) from the gaussian-shaped ensemble acti-
vity profile of formal HD cells:

θ(t) = arctan

(

∑NE

i sin(θi)δ(t − ti)
∑NE

i cos(θi)δ(t − ti)

)

(2)

where the function δ(t− ti) is equal to 1 if the neuron i fired at time t, 0 otherwise.

3 Results

This paper focuses on the effect of static visual stimulation upon the intrinsic dy-
namics of the HD system. An external excitatory input ~v is applied to the pool
of HD cells in the PSC, which propagates this information to the LMN-DTN at-
tractor network (eventually yielding a change of the attractor state) as well as to
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Figure 2. (a) Raster plot showing the response of the HD system to a 90◦ reorienting visual
stimulus applied at time t1 = 500 ms. All preferred directions are updated and the attractor
network settles to a new stable state abruptly (jump). (b) Response of the HD system to a
40◦ reorienting stimulus applied at time t1 = 500 ms. The HD cells shift their preferred
directions towards the new attractor state progressively.

ADN. We take ~v as a gaussian signal with fixed width σv = 15◦, variable amplitude
Av ∈ [0, 1] (corresponding to the intensity of the visual stimulation), and variable
mean µv = θv (corresponding to the absolute direction of the polarizing cue).

Emergence and stability of an attractor state. The rastergram of Fig. 1(b) shows the
spike activity of the NE ADN cells over time. A polarizing stimulus ~v centered at
θv = 90◦ and of normalized amplitude Av = 0.2 is applied during the first 50 ms.
This establishes a stable attractor state corresponding to an ensemble activity pro-
file in which the subpopulation of ADN neurons having preferred directions close
to θv discharge tonically, whereas the others exhibit a very low baseline frequency.
Since an attractor state would eventually emerge from random noise, a stimulus
of weak intensity Av is sufficient to polarize the system around θv . The barycen-
ter of the ensemble firing pattern, computed by applying Eq. 2 and averaging over
∆t = 2 s, is about θ = 85◦. After stimulus removal (50 ≤ t ≤ 2000 ms) the
self-sustained attractor state persists over time providing a stable directional cod-
ing (the head angular velocity ω is zero). This corresponds to the situation in which
the head of the animal is immobile and oriented in a given direction θv and all elec-
trophysiologically recorded HD cells with θi ' θv continue to discharge tonically.
Fig. 1(c) shows the mean firing rate of formal ADN cells as a function of the head
direction θ. The mean peak firing rate is about 40 spikes/s and the width of the hill
of activity is about 100◦. These values are consistent with the mean peak firing rate
and the mean width of the tuning curves of HD cells in the rat ADN [11].

Brief update latencies following reorienting visual stimuli. Fig. 2(a) shows the re-
sponse of the system to a reoriented visual landmark stimulus. At time t1 = 500
ms, an external stimulus ~v1 is applied to the system (e.g., moving from dark to light
conditions) with a 90◦ offset, i.e. µv1

= θv + 90◦. This triggers a 90◦ update of
all preferred directions, which reorients the HD system according to the directional
reference frame anchored to ~v1. As a consequence, the attractor network settles to
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a new stable state rapidly. The intensity of the applied stimulus is Av1
= 1.

Let ∆t∗ be the time necessary for the attractor dynamics to update its state.
To estimate ∆t∗ quantitatively we apply the same technique employed by Zugaro
et al. [13] to measure the update response of HD cells in ADN. For the model,
the resulting update latency is ∆t∗ = 40 ± 10 ms. This is consistent with the
update latency observed experimentally (80 ± 10 ms) given that the model does
not take into account the transmission delay necessary for the visual signals to
reach HD cells in ADN. We are not aware of any experimental data reporting this
retino-thalamic transmission time, however Galambos et al. [7] showed that about
20 − 30 ms are already necessary for the visual stimulation of the retina to evoke
field potentials in the primary visual cortex.

State transition dynamics: Abrupt jump or progressive shift? Whether rat HD cells
respond to visual reorientation by changing their preferred directions abruptly or
in a gradual progressive manner, is an open question [11, 13]. The ‘abrupt versus
progressive update’ issue is also relevant for the theoretical study of state transition
dynamics in associative memories [6] and in cortical working-memory models [5].

Fig. 2(a) suggests that an abrupt jump occurs when a 90◦ reorienting visual
cue polarizes the HD system. But it is not clear whether this can be generalized
to other magnitudes of shifts. For a fixed width of the gaussian-shaped activity
profile, how does the magnitude of the reorienting offset ∆θ influence the state
transition dynamics of the system? We run a series of simulations in which the
same external stimulus ~v1 (Av1

= 1) is applied to the HD system at time t1 = 500
ms. Across trials, the reorienting offset ∆θ = µv1

− θv (with θv = 90◦) is varied
within [0◦, 180◦] by steps of 1◦. Fig. 2(b) shows an example of the state transition
for ∆θ = 40◦. The HD cells respond to the reorienting event by progressively
shifting their preferred directions towards the new attractor state. To discriminate
between state transitions of the type shown in Fig. 2(a) (jump) and those of the type
in Fig. 2(b) (shift), we take the instantaneous standard deviation σ(t)

σ(t) =
(

∑NE

i [|θi − θ(t)| · δ(t − ti)]
2

∑NE

i δ(t − ti)

)
1

2 (3)

of the ensemble HD cell activity around the center of mass θ(t) (Eq. 2). We sample
all σ(t) values within the interval t1 ≤ t ≤ t1 +200 ms and take the mean deviation
h relative to the baseline. Let ∆θ∗ be the critical offset above which the reorienting
visual cue triggers a jump rather than a progressive shift. The function h(∆θ) is
approximately constant for 0 ≤ ∆θ ≤ ∆θ∗ and quasi-linear after. Our results show
that ∆θ∗ (computed by applying the least square error method) is equal to 60± 5◦.

4 Discussion

In contrast to earlier works that use rate code formal neurons to model HD cells, this
paper describes a spiking neuron model and focuses on the temporal aspects of the
state transition dynamics following reorienting visual stimulation. First, the model
reproduces the very short update latencies observed experimentally [13]. Second,
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the model predicts that the state transition dynamics of the HD system is a function
of the magnitude of the angle ∆θ of the visual reorientation and suggests that a
progressive shift of the preferred directions of HD cells would occur for ∆θ ≤ 60◦,
whereas an abrupt jump would take place for larger offsets [10].
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