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Abstract

This paper proposes a bio-mimetic model of head-
direction (HD) cells implemented on a real robot. The
model is based on spiking neurons to study the tem-
poral aspects of state transitions of the HD cell ac-
tivity following reorienting visual stimuli. The short
transient latencies observed experimentally are repro-
duced by the model. We focus on the integration
of angular velocity inertial signals provided by ac-
celerometers. This integration is realized by a con-
tinuous attractor network modeling the interaction be-
tween the lateral mammillary nucleus (LMN) and the
dorsal tegmental nucleus (DTN), two structures be-
longing to the HD cell anatomical circuit. Relevant
parameters defining the connections between LMN
and DTN are determined by a genetic algorithm.

1. Introduction

Self-orienting agents, that is navigating systems able to esti-
mate their own orientation autonomously and on-line, might
rely upon an internal direction representation. Extracellu-
lar recordings from freely-moving rats show the presence of
head-direction (HD) cells, limbic neurons whose firing activ-
ity is correlated with the current direction of the head of the
animal (Taube, 1998). A HD cell � has a unique preferred di-
rection

���
for which it discharges maximally. The directional

coding of the HD cells is independent of the animal location,
and provides, therefore, an allocentric directional representa-
tion.

The properties of the HD cell system resemble those of
a compass, but the allocentric coding of HD cells does not
depend on geomagnetic fields. Rather, the preferred direc-
tions are anchored to visual cues in the environment. For in-
stance, rotating a dominant visual cue by an angle � � causes
a shift � � of all the preferred directions of the HD cells
(Taube, 1998, Zugaro et al., 2001). Besides the control of vi-
sual cues upon HD cells, experiments show that inertial self-
motion signals (e.g. vestibular) strongly influence the dynam-

ics of the HD cell system. For instance, when the environ-
mental light is turned off, the directional coding is maintained
(Taube, 1998). In addition, when the head of the animal ro-
tates, vestibular signals (coding for the head angular velo-
city � ) are integrated to update the HD representation over
time.

HD cells have been observed in several regions cen-
tered on the brain limbic system, in particular the post-
subiculum (PSC), the anterodorsal thalamic nucleus (ADN),
and the lateral mammillary nucleus (LMN) (Taube, 1998).
Inertial self-motion signals are likely to converge onto
the HD system via the dorsal tegmental nucleus (DTN)
(Bassett and Taube, 2001) which projects inhibitory connec-
tions directly to LMN. Visual inputs enter the HD system
via the PSC which receives afferents from the visual cortex
(Taube, 1998). Fig. 1 shows the anatomical interconnections
between PSC, ADN, LMN and DTN.

Maintaining a sense of direction autonomously is crucial
for both biological and artificial systems involved in naviga-
tion. For instance, path integration allows a navigating agent
to infer its location and its heading relative to a departure
point (Mittelstaedt and Mittelstaedt, 1980). This implies esti-
mating the rotational as well as the translational components
of motion continuously. In addition, lesions to the HD cell
system disrupt the allocentric location representation of hip-
pocampal place cells (Knierim et al., 1995), neurons whose
firing activity is correlated with the location of the animal.
Consequently, the sense of direction is necessary for esta-
blishing place cell representations.

This paper presents a neuro-mimetic model of the HD sys-
tem and focuses on its robotic implementation. To reflect the
properties of the rat HD cell system, the model must provide
a stable and persistent HD representation robust to noise and
must permit the integration of an angular velocity signal.

The model is based upon a continuous attractor/integrator
neural network modeling the DTN-LMN interaction. An at-
tractor model of HD cells is a neural network in which units
encoding neighboring directions are recursively connected by
strong excitatory synapses, whereas units having distant pre-
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Figure 1: Anatomical connections between the postsubiculum
(PSC), the anterodorsal thalamic nucleus (ADN), the lateral mam-
millary nucleus (LMN) and the dorsal tegmental nucleus (DTN).
Arrows and circles indicate excitatory and inhibitory connections,
respectively.

ferred directions strongly inhibit each other. The interaction
between the excitation and the inhibition in the neural net-
work determines the intrinsic dynamics of the attractor. This
allows the system to reproduce properties exhibited by rat HD
cells. For instance, the system is able to encode a stable HD
representation where a subpopulation of HD cells encoding
similar directions are active while others remain silent. This
HD representation can be updated by extrinsic input signals
(e.g. vestibular angular velocity) utilized to shift the ensem-
ble hill of activity of the HD cells over the directional space.

The integration of angular velocity realized by the model is
not perfect in a mathematical sense. Consequently, the model
needs a calibration method to avoid a cumulative tracking er-
ror. We simulate a vision-based calibration by generating an
external stimulus applied to the HD cell system. Electrophys-
iological studies by (Zugaro et al., 2003) have focused on the
temporal aspects of the preferred direction update in ADN.
The quantitative results show a short update latency of ap-
proximately �
	����	���� . Our model uses spiking neurons
and allows us to study the temporal aspects of the attractor
state transitions. Particularly, the model reproduces the fast
update transient exhibited by the rat HD cells observed by
(Zugaro et al., 2003).

Several models of HD cells have been previously pro-
posed (Skaggs et al., 1995, Zhang, 1996, Redish et al., 1996,
Goodridge and Touretzky, 2000). These models, however,
have not been tested by means of robotic implementations.
The HD model by (Arleo and Gerstner, 2000) has been val-
idated on a real robot but it uses rate coding computational
units which make it impossible to study the dynamics of the
system for short time windows. A robotic compass system
has been proposed by (Gourichon et al., 2003). However, the
authors focus on static visual information only, and do not in-
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Figure 2: A view of the DTN-LMN interaction. An attractor net-
work is formed by the excitatory connections from LMN to DTN
(arrows) and the inhibitory connections from DTN to LMN (circles).
Also, inhibitory connections within DTN are employed to integrate
angular velocity signals.

tegrate angular velocity over time. The model presented here
is similar to our previous work (Degris et al., 2004) that puts
forth an attractor neural network of spiking neurons to model
the DTN-LMN circuit. In contrast to that model, the attractor
system presented here does not employ recurrent excitatory
projections within the LMN network, consistent with anatom-
ical findings (Allen and Hopkins, 1989). Furthermore, our
previous model has been validated by means of numerical
simulations only. Here we stress the importance of endowing
a mobile robot with a HD system using spiking neurons, and
we cope with implementation constraints such as real time
performance.

2. Methods

We model HD cells by means of a modular artificial neural
network. Fig. 2 shows a view of the model. The architec-
ture consists of an attractor-integrator network composed by
a population LMN of �������	
	�	 excitatory directional units
and two populations DTN ��� and DTN ����� of ��� �"!�	�	 in-
hibitory directional units each. The HD units within each net-
work have evenly distributed preferred directions.

The dynamics of the HD system is primarily controlled by
idiothetic signals (i.e. self-motion inertial inputs) which de-
termine the directional selectivity property of the formal HD
cells. Allothetic information (e.g. visual input) can be used
to occasionally modify the system’s dynamics and calibrate
the HD cell activity.

2.1 Robotic Platform

In order to validate the model experimentally, we have imple-
mented it on a mobile Pekee1 robot (Fig. 3). The behavior of
the robot is monitored by an infrared camera above the arena
tracking two LEDs positioned on the robot. The relative po-
sitions of the two LEDs are sampled at about #
	%$'& , which

1The Pekee robot is commercialized by Wany Robotics,
http://www.wanyrobotics.com



Figure 3: The mobile Pekee robot with the MT9 device (the black
box in front of the robot) for sensing inertial self-motion signals.

allows us to measure the actual orientation
�)(+*-,

of the robot
over time.

The robot’s sensory system consists of an odometer and a
Xsens MT92 device for sensing inertial self-motion signals.
The MT9 device, composed of gyroscopes, accelerometers
and magnetometers, provides a real time absolute orientation
resulting of the fusion of the inputs of these sensors.

The low-level controller of the robot runs on the on-board
computer, whereas the HD model and the high-level con-
troller run on a remote PC Pentium IV.

2.2 Attractor network

In order to generate and maintain a HD signal .� , we con-
sider a continuous attractor network based on the intercon-
nections between LMN and DTN (Blair et al., 1998). Fig. 4
shows the connections between formal neurons in LMN and
DTN. Note that, because there is no experimental evidence
for lateral connections in LMN (Allen and Hopkins, 1989),
there is no recurrent excitation in the LMN of the model
(Song and Wang, 2002).

LMN projects excitatory connections to DTN. The weight/10 � of these connections is such that a neuron �32 LMN
with a preferred direction

�4�
projects to a cell 5 2 DTN with

a preferred direction
� 0 according to a Gaussian weight dis-

tribution/ 0 � �7698;:=<> ?A@=BDCFE1G (H�I� G � 01J�KLJNM > ,POQ4R O> S (1)

where 6 8T:�<> �3#�UWV U is the maximum weight of excitatory
connections and

R > �X#ZYZV Q�[ is the width of the Gaussian
profile. The values of these parameters have been determined
by means of a genetic algorithm (Sec. 2.6). The term M > is the
angular offset of the intermodule connections with M > �\!4	 [
if 5 2 DTN ��� and M > � G !4	 [ if 5 2 DTN ����� .

2The MT9 device is commercialized by Xsens Motion Technologies,
http://www.xsens.com

LMN

DTN

Figure 4: The attractor network is based on excitatory connections
from LMN to DTN (arrows) and inhibitory connections from DTN
to LMN (circles).

Global inhibition, necessary to implement the center-
surround attractor scheme, is provided by the connections
from DTN to LMN. The weight / � 0 of these connections
is distributed according to/ � 0 �]6 8T:�<^ ?�@=BDCFETG (+� 0 G � � ,-OQ4R O^ S (2)

where 6 8T:�<^ �_!4`aV ! is the maximum weight of inhibitory
connections, and

R ^ �bAcZYDV U [ is the width of the Gaussian
weight distribution (also these two parameters have been set
by means of the genetic algorithm described in Sec. 2.6).

Because of the real-time constraint, only the connections
with a weight /ed 	aVfY�!hgi6 8T:�< are actually implemented
in the network. This avoids the propagation of spikes along
synapses with small weight and drastically reduces the com-
putational complexity of the model. The intrinsic dynam-
ics of the DTN-LMN attractor network settles the system
down to stable (self-sustained) attractor states, in which
subpopulations of HD cells with similar preferred direc-
tions are active while the others remain silent (Zhang, 1996,
Blair et al., 1998).

2.3 Integrator

To integrate non-zero angular velocities (i.e. to shift the
stable state over the continuous attractor space according
to the angular velocity � ), an unbalanced cell activity be-
tween DTN ��� and DTN ����� is generated. The neuronal re-
sponses of the DTN ��� and DTN ����� cells are correlated with
both the head direction

�a(H*-,
and the angular velocity � (+*-, .

In particular, the activity of directional cells in DTN ��� and
DTN ����� is modulated proportionally to j � (H*-, j during clock-
wise and counterclockwise turning, respectively. Neurons
encoding the animal’s head angular velocity have been ob-
served in the parietal, somatosensory, and visual cortices
(McNaughton et al., 1991, Blair and Sharp, 1995).

Fig. 5 shows the lateral connections between DTN ��� and
DTN ����� . These connections are distributed such that a neu-
ron k with a preferred direction

� ^ projects to a cell l with a
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Figure 5: The integrator is based on inhibitory lateral connections
(circles) between DTN m�n and DTN mom�n .

preferred direction
��p

according to/ p ^ �q698T:�<p ^ ?�@=BDC E G (H� ^ G �Ip JNM p ^ ,POQ�R Op ^ S (3)

where the maximum weight 6 8T:�<p ^ � Q !DV # and the widthR p ^ �rUs!DVt [ have been determined by the genetic algorithm
(Sec. 2.6). The term M p ^ is the angular offset of the inter-
module connections with M p ^ � G U�	 [ if k 2 DTN ��� andM p ^ �qU
	 [ if k 2 DTN ����� . Only the connections with a weight/ p ^ d 	WV `�	ugv6 8T:�<p ^ are actually implemented in the network.

During clockwise head turns, for instance, DTN ��� cells
inhibit the left side of the LMN hill of activity encoding
the current direction

�
(i.e. introduce an asymmetry within

the recurrent coupling between LMN and DTN). The lateral
shifted connections between DTN ��� and DTN ����� reinforce
the asymmetry in DTN. During clockwise head turns, DTN ���
cells inhibit the left side of the DTN ����� hill. Thus, the inhi-
bition on the right side of the LMN hill is decreased when
the inhibition by cells in DTN ��� on the left side is increased.
This yields a clockwise shift � � of the LMN activity profile.
The speed of this shift is proportional to j �ij .
2.4 Interpreting the directional output

At each time
*
, the ensemble activity of a population of neu-

rons provides the estimate .�a(+*-, of the allocentric heading
�a(+*-,

of the robot. In order to compute .�)(+*-, , we apply a population
vector scheme (Georgopoulos et al., 1986) to decode the en-
semble HD cell activity:�a(H*-, �qw�xzy={zw�|'}T~]�� ��k � (+���D, M (H* G *P�W,~q����=� � (+� � , M (H* G * � ,�� (4)

where M (H* G * ^ , is a Dirac function equal to  if the neuron �
fires at time

*
, 	 otherwise.

2.5 Neuron and synapse model

Both excitatory and inhibitory formal units are leaky
integrate-and-fire neurons. Let � p � G Y�	�� � , �a���G !4	���� , and �)��� G !�!���� denote the resting membrane
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Figure 6: Evaluation of a set of parameters at time � . For each neuron� , the desired Gaussian profile ��� (dashed line) is compared to the
generated Gaussian profile �A� (solid line).

potential, the firing threshold, and the reset potential of a for-
mal neuron, respectively. Let � (H*-, be the total synaptic drive
received by a cell from the afferent units. The dynamics of
the membrane potential � (H*-, is given by� ?)� � (H*-,� * � G;��? ( � (+*-, G � po, J � (+*-, J �A� (+*-, (5)

where
�

and � are, respectively, the membrane capacitance
and leak conductance ( ��� ��� � is the membrane time con-
stant) with

� ��	WVf!7��� for an excitatory cell and
� �	WV Q ��� for an inhibitory cell; � 8 � Q ! �v� for an excitatory

cell and � 8 � Q 	 �v� for an inhibitory cell. The refractory
period is

Q ��� and �� � for an excitatory neuron and an
inhibitory neuron, respectively.� � (H*-, is the background input activity of a neuron and is
defined as �A� (H*-, �¡  � �
¢A£ ¤ ?A¥ (H*-, (6)

where   � � ¢�£ ¤ is a random number uniformly drawn from¦ 	W§AA¨ . The factor ¥ (+*-, is constant for excitatory neurons and
equal to  Q 	�	 . For inhibitory neurons¥ (+*-, � ¥ ^ J ¥%©L? � (+*-, (7)

where ¥ ^ ���	�	 , ¥%© �]	WV c�c , and � (+*-, is the angular velocity
at time

*
. The value of ¥F© has been determined by the genetic

algorithm described in Sec. 2.6.
The synaptic input to a neuron � is taken as� (+*-, �qª ? � (+*-, (8)

where ª«�¬	aV 	a is a constant factor and � (+*-, is a gating
variable whose dynamics is given by

� (H* J � *-, � (  G ª , ? � (H*-, J �0�® ¢ M (+* G * 0 , ? / � 0 J'� ( � , (9)

where � * �¯;��� is the time step, ~ � 0�® ¢ M (+* G * 0 , ? / � 0 is a
weighted sum over the spikes emitted by the presynaptic neu-
rons 5 and / � 0 is the strength of the connection from a presy-
naptic unit 5 to the postsynaptic neuron � , with / � 0Ld 	 for
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Figure 7: Evolution of the average fitness function over generations.

excitatory connections and / � 0±° 	 for inhibitory connec-
tions. The function � ( � , represents a stimulus that can be
applied to the excitatory LMN neurons, and defines the num-
ber of spikes conveyed by the stimulus to a neuron � at time*
. � ( � , is distributed over the neurons �q2 LMN according

to a gaussian profile with amplitude 6³²9�´!4c
	 and widthR ²µ�¶`
	 [ .
2.6 Genetic Algorithm

Three sets of Gaussian connections are used in the model:
LMN to DTN, DTN to LMN, and the lateral connections be-
tween DTN ��� and DTN ����� . As seen in Eqs. 1, 2 and 3, two
parameters are relevant for determining the weight of a con-
nection: the maximum weight 6 8T:�< and the width of the
Gaussian

R
. All the six weight parameters as well as the fac-

tor ¥ © used in Eq. 7 have been determined by using a genetic
algorithm in simulation. This learning procedure allowed us
to find a set of parameters that provides the model with ap-
propriate stability and integration properties.

The fitness function measures the difference between the
desired Gaussian activity profile � ��(H*-, in LMN and the pro-
file · ��(+*-, generated by the current set of parameters (Fig. 6).
The desired profile function � � (+*-, at time

*
is determined by:

� � (H*-, �]¸ ?A@=BDCT¹sº¼»H½sºf¾À¿À¹
»ÂÁ
ºf¾À¿¼¿¼ÃÃoÄ Ã (10)

where ¸Å�rc
	 $'& , R �Æcs	 [ and
��ÇÈ(+*-,

is the current robot
direction in the simulation. The fitness function É (H*-, is given
by: É (H*-, � ~ �ËÊ� ® ¤ @ABDC1Ì Í ½
ºÎ¾t¿Ï¹
Ð�½sºÎ¾t¿ ÌÑ� (11)

where · � (H*-, is the frequency of the neuron � at time
*

and5%�¯�YZV c a constant.
To improve the selection of appropriate sets of parameters,

generations are tested through four different steps Ò :

1. stability of the model:
�4ÇÈ(H*-, � � ^ � ^ � ^ : p is constant and the

angular velocity � is null, ÒÓ�]	 ,
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Figure 8: Emergence of a stable state in LMN in the absence of
any polarizing stimulus. The hill of activity is centered at a random
direction ÔÕ=Ö . Spikes are represented by dots.

2. integration of a low angular velocity:
� Ç (+* J � *-, �� ^ � ^ � ^ : p J � ? * where �±×9�! [ � � , ÒØ�¯ ,

3. integration of a medium angular velocity:
� Ç (+* J � *-, �� ^ � ^ � ^ : p J � ? * where �±×¡cs! [ � � , ÒØ� Q ,

4. integration of a high angular velocity:
� Ç (H* J � *-, �� ^ � ^ � ^ : p J � ? * where �±×9��	 [ � � , ÒØ�¶U .

Only those neural networks with a fitness É"ÙÚ	WVÎY4! for a
given step Ò are selected and tested in the phase Ò J  . The
final fitness ÉÜÛ for a given set of parameters Ý is defined by

ÉÜÛN�]Ò JßÞ � ® ¢ É
(+*-,à (12)

where
à

is the duration of the experiment. The evolution of
the fitness over generations is shown Fig. 7.

3. Results

First, we study the emergence and stability of a hill of activity
to assess the attractor property of the HD model. Second, we
study the update of the HD signal based on the integration of
an ideal angular velocity input. Third, we apply to the model
a real angular velocity signal provided by the MT9 device.
Finally, we simulate a visual-based calibration of the system
and focus on the latency of the update of the HD cell preferred
directions.

3.1 Emergence and stability of an attractor state

The attractor dynamics of the model yields the emergence
of a stable state from random noise. Thus, in the absence
of external stimuli, the HD population activity profile settles
down to a self-sustained state in which only a subpopulation
of cells with similar preferred directions discharges tonically.
The blob of activity encodes a constant direction .� > (as shown
in Fig. 8). The attractor state is established after a transitory
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Figure 9: (a) Rastergram of the activity of the HD cells in LMN overá�âLã
. A polarizing external stimulus (applied at

Õ�ä�å9æ âIç
during

the first è â'é%ã ) generates a stable attractor state. After stimulus
removal ( �ëê_è â�é�ã ) the self-sustained state persists over time.
(b) Stability of the HD representation over time. The dashed line
represents the initial direction

Õ ä
set by the stimulus during the firstè â;é�ã . The continuous line is the direction computed by population

vector coding (Eq. 4).

period (of approximately Y�	
	���� ) characterized by an oscil-
latory activity pattern. The relative weight between inhibition
and excitation determines the equilibrium reached after the
transient period.

The model can also be initialized to a specific direction
�
ì

by applying an external stimulus � to LMN. The rastergram
in Fig. 9 (a) shows the spike activity of the � � cells in LMN
when a polarizing input centered at

� ² �í`
	 [ is applied dur-
ing the first �	³� � . After stimulus removal (

* d �	³��� ),
the attractor state persists over the time. This corresponds to
the situation in which the head of the animal is immobile (the
head angular velocity � is zero) and oriented in a given direc-
tion

� ² . The mean peak spike frequency and the width of the
hill of activity, averaged over

à �]#�	h� , are about U
	î$'& andQ 	
	 [ , respectively.
The center of mass of the ensemble firing pattern, com-

puted according to Eq. 4 and averaging over
à �´#�	N� , is
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Figure 10: Integration of ideal angular velocities by the model. Top:
a velocity ïñð å è=ò ç=ó ã is applied for è â�ã�ô � ô¶õAâ�ã ; a velocityïvö å¶÷ ò çAó ã is applied for ø â�ã�ô � ô ÷ â�ã ; and a velocity ï�ù åè�è â çAó ã is applied for ò â�ãiô � ôNá�â�ã . The dashed line represents
the ideal integration of these angular velocities. The continuous line
represents the direction signal of the HD cells of the model. Bottom:
the integration error of the HD system over time.

about .� �Ó��# [ . Fig. 9 (b) shows the stability of the di-
rectional representation over #�	r� . The mean error úû�~ �ýüü .�)(+*-, G � ² üü � à is about ` [ .
3.2 Integration

When the head of the rat rotates (i.e. ��þ�e	 ), the HD cell
system integrates the angular velocity in order to update the
HD representation over time.

We first investigate the integration done by the model in
the case of three ideal angular velocity signals, � ¤ �ÿ�! [ � � ,� O �ûcs! [ � � and ���%�Å��	 [ � � . Each angular velocity input
is applied during a �	�� period. Fig. 10 shows the response of
the HD cell system to these three velocity profiles as well as
the integration error over time. The average error of the es-
timation of the direction by the model is about  Q [ . Qualita-
tively, the diagram shows that the larger the angular velocity,
the larger the error.

The above simulation does not reflect the noise present in
real experimental conditions. For instance, when sending a
motor command to the robot, the motion generated by the ac-
tuators is noisy. Fig. 11 compares an ideal angular velocity
profile (motor command) to the real angular velocity of the
robot. The robot is asked to turn on the spot at different ran-
dom speeds for different random time periods. The angular
velocity of the robot is computed from the absolute direction
given by the video tracking system. The comparison shows
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Figure 11: Example of noisy angular velocity profile. The dashed
line represents the command sent to the robot. The continuous line
indicates the angular velocity computed by the tracking system.

that, given a constant angular velocity command, the real an-
gular velocity of the robot is unstable.

Since the navigating robot has to be able to estimate its
current heading autonomously, it must integrate the angular
velocity signals coming from of one of the on-board sensory
systems. The robot is equipped with odometers measuring
locomotor signals and accelerometers (the MT9 device) pro-
viding inertial signals.

Fig. 12 compares the real direction of the robot (provided
by the video tracking system) and the directions computed
by the MT9 device and by the odometers. The experimen-
tal protocol is the same as the one used previously. Letú7� ~ � j ���o(H*-, G �a(+*-, j � à denote the mean error, averaged
over

à �Æ�	�	�� , between the estimation
���Â(H*-,

and the actual
direction

�a(H*-,
of the robot. We average ú over 26 trials and

find an error of ú�� Þ � �ÿ#4c [ for the directional signal from
the MT9 device and an error of ú��
	��T�7YD [ for the odometers.

Note that, given the experimental protocol (a robot rotating
on the spot), non-systematic errors, like wheel slippage or ir-
regularities on rough surface, are unlikely to occur. Despite
the small difference between ú�� Þ � and ú��	�� , the angular ve-
locity input provided by the MT9 device is more reliable than
the signal from the odometers. For instance, if the robot was
pulled up and displaced passively by the experimenter, the
odometry would be seriously impaired whereas the MT9 de-
vice would be able to sense the movement. Therefore, we
decided to use the MT9 device signal as input for our HD
model.

At time
* �e	 , the HD system is initialized with respect

to an absolute direction
�
� Þ � . As the robot starts rotating,

the signals from the MT9 device are integrated by the model
which starts shifting its internal representation to track the
angular displacements of the robot. Fig. 13 shows an example
of the update of the HD signal .�a(+*-, encoding the current robot
heading

�)(+*-,
as well as the tracking error over time. The mean

error of the model, over
Q # trials of

à �"�	
	F� each, is U�U [
relative to the input of the MT9 device and about Y4U [ relative
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Figure 12: Tracking of the robot actual direction (represented by
the dashed line) by the MT9 device (a) and by the integration of the
input from the odometers (b).

to the output of the video tracking system.
As shown in Fig. 13, the integration realized by the model

is not perfect in a mathematical sense. Thus, the system
needs to be calibrated to avoid cumulative errors over time.
In this paper, we do not describe any calibration mechanism
(Arleo and Gerstner, 2000). Rather, we focus on the temporal
aspects of the update of the preferred directions of HD cells
by a reorienting visual stimulus.

3.3 Short update latencies following reorienting
stimuli

Electrophysiological findings suggest that HD cells are con-
trolled by salient visual cues (Taube, 1998). Recently,
(Zugaro et al., 2003) have measured the time necessary to up-
date the preferred directions of rat HD cells by a reorienting
visual landmark. The experimental setup consisted of a black
cylinder with a white card attached to the inner wall used as
a visual cue. The preferred directions of the HD cells were
first measured in light conditions. Then, in the dark, the cue
card was rotated by `
	 [ . When, the light was turned back on
the HD cells updated their preferred directions to reflect the
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Figure 13: Update of the HD directional coding by the model (con-
tinuous line) by integrating the signal provided by the MT9 device
(dashed line). The error of integration of the model compared to the
direction given by MT9 is shown in the diagram below.

new visual configuration. A mean latency of ��	 �N�	i��� was
observed for the establishment of a new blob following the re-
orientation event. On the other hand, Acs	 � �	�� � were nec-
essary for the extinction of the hill of activity existing prior
the reorientation event.

To reproduce these results, the model is first initialized
with an external stimulus � centered at a specific direction� ² ��`�	 [ . Second, at time

* ²�� ��!�� , a reorienting stim-
ulus � � is applied at

� ²���� Q Y4	 [ (simulating the transition
from dark to light conditions). Fig. 14 shows the response of
the system to the reorienting visual stimulus which triggers
a ��
	 [ update of all preferred directions. The HD system
is reoriented according to the directional reference frame an-
chored to � � . As a consequence, the attractor network settles
to a new stable state abruptly.

The resulting update latency for the establishment of the
new blob of activity is about U
	³� � , whereas the transient
delay for the extinction of the previous attractor state is about��	�� � . The attractor dynamics is such that inhibition occurs
after the increase in the overall activity of the network. This
causes a longer update time for the extinction of the previ-
ous hill of activity. These results are consistent with those
reported by (Zugaro et al., 2003). Note that in the model
the transmission delay necessary for the visual signals to
reach HD cells is not taken into account. There are no ex-
perimental data reporting this transmission delay. However,
(Galambos et al., 2000) show that a visual stimulus takes al-
ready about U�	���� to go from the retina to the primary visual
cortex.
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Figure 14: Raster plot showing the response of the HD system to aè�� â ç reorienting visual stimulus applied at time � ä � å ò ã . A new
blob of activity is established at

Õ ä � å õ���â ç whereas the previous
hill of activity is extinguished.

4. Discussion

The main goal of this work was to endow a robot with an allo-
centric direction representation. We adopted a neuro-mimetic
approach inspired by the properties of head direction (HD)
cells, neurons observed in the rat’s limbic system.

In order to obtain a stable and persistent HD signal, the
model relies on an attractor neural network modeling the neu-
ral circuit formed by the lateral mammillary nucleus (LMN)
and the dorsal tegmental nucleus (DTN). These two anatomi-
cal structures are relevant for generating and maintaining the
internal direction representation of rat HD cells. The model
reproduces the anatomical interconnectivity between LMN
and DTN. The attractor network has no lateral excitatory con-
nections to reflect the absence of experimental evidence for
recurrent excitation in the DTN-LMN circuit. Similar to the
rat HD cell system, the model can integrate angular velocity
signals to update the direction representation over time. Lat-
eral inhibitory connections in the formal DTN are used for
this purpose.

In contrast to earlier HD models, we employ spiking neu-
rons to focus on the temporal aspects of the dynamics of
the attractor network. For instance, electrophysiological data
suggest a very rapid reorientation of the HD representation
following changes in the visual scene. The model is able to
reproduce these short update latencies.

We stress the importance of validating the model in real
experimental conditions in order to make it useful for au-
tonomous navigating systems. We assess the ability of the
model to integrate an angular velocity signal � (+*-, in real-
time. We employ an inertial sensor to estimate the angular
displacements of the robot. The integration of � (+*-, is affected
by a drift of the internal direction representation over time.
Therefore, a calibration mechanism, based for instance on vi-
sion, will be further developed. Experimental findings show
that visual information is conveyed to the HD system via the



postsubiculum (PSC). The model may be extended by adding
a PSC module performing the vision-based calibration.

The HD model presented here provides a subcomponent
for a larger autonomous navigating system. This work is part
of Psikharpax, a project that aims at developing a bio-mimetic
navigation and action selection model embedded on a real
robot.
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