
Learning the Structure of Factored Markov Decision Processes in
Reinforcement Learning Problems

Thomas Degris Thomas.Degris@lip6.fr
Olivier Sigaud Olivier.Sigaud@lip6.fr
Pierre-Henri Wuillemin Pierre-Henri.Wuillemin@lip6.fr
Université Pierre et Marie Curie-Paris6, UMR7606, AnimatLab/LIP6, Paris, F-75005 France ; CNRS, UMR7606, Paris,
F-75005 France

Abstract

Recent decision-theoric planning algorithms
are able to find optimal solutions in large
problems, using Factored Markov Decision
Processes (fmdps). However, these algo-
rithms need a perfect knowledge of the struc-
ture of the problem. In this paper, we pro-
pose sdyna, a general framework for address-
ing large reinforcement learning problems by
trial-and-error and with no initial knowledge
of their structure. sdyna integrates incre-
mental planning algorithms based on fmdps
with supervised learning techniques build-
ing structured representations of the prob-
lem. We describe spiti, an instantiation of
sdyna, that uses incremental decision tree
induction to learn the structure of a prob-
lem combined with an incremental version of
the Structured Value Iteration algorithm. We
show that spiti can build a factored repre-
sentation of a reinforcement learning prob-
lem and may improve the policy faster than
tabular reinforcement learning algorithms by
exploiting the generalization property of de-
cision tree induction algorithms.

1. Introduction

Markov Decision Processes (mdps) have been widely
used in the Decision-Theoric Planning (dtp) commu-
nity and are a fundamental framework in the Rein-
forcement Learning (rl) domain. When the transi-
tion and reward functions are known, solution meth-
ods based on Dynamic Programming (dp) are effective
on small problems. However, they cannot be applied
as such to large problems because they require an ex-
plicit state space enumeration.

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

Factored mdps (fmdps) first proposed by Boutilier
et al. (1995) compactly represent the transition and
reward functions of a problem using Dynamic Bayesian
Networks (dbns). Classical solution methods (i.e. dp)
have been successfully adapted to manipulate such
representations (Boutilier et al., 2000) and have been
developed to solve large problems (Hoey et al., 1999;
Guestrin et al., 2003). However, these planning tech-
niques require a perfect knowledge of the transition
and reward functions of the problem, which may not
be available in practice.

Sutton and Barto (1998) describe two approaches for
rl solutions when the transition and reward functions
are not known. Direct (or value-based) rl algorithms
build an evaluation of the optimal value function from
which they build an optimal policy. Based on such
rl approach, McCallum (1995) and Sallans and Hin-
ton (2004) propose to use structured representations
to handle large rl problems. Indirect (or model-based)
rl algorithms build incrementally a model of the tran-
sition and reward functions. From this model, an eval-
uation of the optimal value function is computed using
planning algorithms. Algorithms within the dyna ar-
chitecture such as dyna-q (Sutton, 1990) learns a tab-
ular representation of the transition and the reward
functions to incrementally update its value function
and its policy at states recorded in the model.

Indirect rl methods using planning algorithms in
fmdps are described in Guestrin et al. (2002). How-
ever, these methods make strong assumptions on the
problem to solve, such as knowing the structure of the
problem in advance. Techniques to learn the struc-
ture of dbns have been proposed in Chickering et al.
(1997) and Friedman and Goldszmidt (1998). These
methods first estimate the global structure of a dbn
and then evaluate the local structure quantifying the
network, which make them difficult to integrate within
an incremental rl algorithm. At this time, we are not
aware of any indirect rl algorithm in fmdp that does
not assume at least the knowledge of the structure of

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems

the problem to solve.

In this paper, we describe Structured dyna (sdyna),
a general indirect rl framework based on fmdps. To
solve a problem with unknown reward and transi-
tion functions, sdyna incrementally builds a struc-
tured representation of these functions and then uses
adapted incremental planning algorithms from dtp re-
search to compute a structured representation of the
optimal value function. Besides, we propose to learn
the reward function and the dbns of the transition
function using incremental decision tree induction al-
gorithms (Utgoff, 1986). More precisely, we focus on
spiti, an instantiation of sdyna which uses iti (Ut-
goff et al., 1997) to learn incrementally a structured
model of a stochastic rl problem. Then, a modified
incremental version of the Structured Value Iteration
(svi) algorithm (Boutilier et al., 2000) builds a fac-
tored representation of the value function of a greedy
policy from this model.

The paper is organized as follows: first, we describe
spiti within the sdyna framework. Second, we vali-
date our approach by comparing spiti to dyna-q. We
show that, unlike dyna-q, spiti builds a compact rep-
resentation of the problem. We also illustrate a gen-
eralization property resulting from the use of decision
tree induction. Finally, we present some extensions
and future work within the sdyna framework.

2. Background

We first introduce some definitions used in this pa-
per. A mdp is a tuple 〈S, A,R, T 〉 where S and
A are respectively a finite set of states and actions;
R : S × A → IR is the immediate reward function
R(s, a) and T : S × A × S → [0, 1] is the Markovian
transition function P (s′|s, a) of the mdp. A stationary
policy π : S×A → [0, 1] defines the probability π(s, a)
that the agent takes the action a in state s. The goal
is to find a policy π maximizing the value function
Vπ(s) defined using the discounted reward criterion:
Vπ(s) = Eπ[

∑∞
t=0 γt · rt|s0 = s], with 0 ≤ γ < 1 the

discount factor, rt the reward obtained at time t and s0

the initial state, considering an infinite horizon. The
action-value function Qπ(s, a) is defined as:

Qπ(s, a) =
∑
s′∈S

P (s′|s, a)(R(s′, a) + γVπ(s′)) (1)

The optimal value function V ∗ and an optimal policy
π∗ are defined by V ∗ = Vπ∗ and ∀π, ∀s : V ∗(s) ≥
Vπ(s). Given the fully defined R and T functions, dp
proposes a family of solution methods, namely Value
Iteration and Policy Iteration.

2.1. Indirect Reinforcement Learning

In some problems, the reward function R and the tran-
sition model T are not known in advance. Indirect
rl proposes to learn these functions by trial-and-error
during the experiment. This approach is illustrated in
the dyna architecture (Sutton, 1990) that integrates
planning, acting and learning together. The dyna-q
algorithm is one instantiation of dyna. In this paper,
we use a stochastic version of dyna-q that learns a
stochastic tabular representation of the transition and
reward functions and then uses the update rule of the
Q-learning algorithm (Watkins, 1989) weighted with
the probability learned in the model to approximate
V ∗ and π∗.

2.2. Factored Markov Decision Processes

Representing large mdps using factored models to ex-
ploit the structure of the problem was first proposed by
Boutilier et al. (1995). In a fmdp, states are decom-
posed as a set of random variables S = {X1, . . . , Xn},
where each Xi takes value in a finite domain Dom(Xi).
Thus, a state is defined by a vector of values s =
(x1, . . . , xn) with ∀i, xi ∈ Dom(Xi). We denote Xi

to be a variable at time t and X ′
i the same variable at

time t + 1.

The state transition model Ta for an action a is com-
posed of a transition graph represented as a dbn (Dean
& Kanazawa, 1989), that is a two-layer directed acyclic
graph Ga whose nodes are {X1, . . . , Xn, X ′

1, . . . , X
′
n}

(see figure 3 for an example of dbn). In Ga, the
parents of X ′

i are noted Parentsa(X ′
i). In this pa-

per, we assume that Parentsa(X ′
i) ⊆ X (meaning

that there are no synchronic arcs, that is arcs from
X ′

i to X ′
j). A Conditional Probability Distribution

CPDa
Xi

(X ′
i|Parentsa(X ′

i)) quantifying the graph is as-
sociated to each node X ′

i ∈ Ga. The full transition
model of the mdp is then defined by a separate dbn
model Ta = 〈Ga, {CPDa

X1
, . . . ,CPDa

Xn
}〉 for each ac-

tion a.

3. Methods

Similarly to dyna, we propose the Structured dyna
(sdyna) architecture to integrate planning, acting and
learning using structured representations instead of
tabular representations. This architecture aims at
solving large rl problems with an unknown struc-
ture using incremental versions of planning techniques
based on fmdps.

An overview of sdyna is given in figure 1. Fact(F)
represents a factored representation of the function F .
Factored representations, such as rules, decision trees

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems

or boolean decision diagrams, allow to exploit certain
regularities in F to represent or manipulate it.

Input: Acting, Learn, P lan, Fact
Output: Fact(π)

1. Initialization

2. At each time step t, do:

(a) s ← current (non-terminal) state

(b) a ← Acting(s, {∀a ∈ A: Fact(Qt−1(s, a))})
(c) Execute a; observe s′ and r

(d) {Fact(Rt), Fact(Tt)} ←
Learn(〈s, a, s′〉, Fact(Rt−1), Fact(Tt−1))

(e) {Fact(Vt), {∀a ∈ A: Fact(Qt(s, a))}} ←
Plan(Fact(Rt), Fact(Tt), Fact(Vt−1))

Figure 1. The sdyna algorithm

The acting phase of sdyna (steps 2.a, 2.b and 2.c)
is similar to dyna-q and exploration policies such as
ε-greedy can be used without modification. On the
contrary, the learning and planning phases depend
directly on the factored representation used. Unlike
dyna-q, sdyna does not work if the planning phase
is disabled.

In the remainder, we focus on spiti, an instantiation
of sdyna, that uses decision trees to represent the ma-
nipulated functions. The tree representation of a func-
tion F is noted Tree(F). The acting phase of spiti
is instantiated by an ε-greedy exploration policy. Its
learning phase (steps 2.d and 2.e in sdyna) is based on
incremental decision tree induction (section 3.1). Its
planning phase (steps 2.f) is based on a modified in-
cremental version of Structured Value Iteration (svi),
an algorithm proposed by Boutilier et al. (2000), de-
scribed in section 3.2.

3.1. SPITI: Learning a Structured Model of a
RL Problem

When an agent performs an action a in a state s, it
can exploit two different feedbacks: its new state s′

and the reward r received when doing the action a
in state s. Classification algorithms learn a function
from a set of examples 〈A, ς〉 with A a set of attributes
νi and ς the class of the example. Consequently,
from the observation of the agent 〈s, a, s′, r〉 with
s = (x1, . . . , xn) and s′ = (x′1, . . . , x

′
n), we propose

to learn the reward R(s, a) and the transition CPDa
Xi

models from the examples 〈A = (x1, . . . , xn, a), ς = r〉
and 〈A = (x1, . . . , xn), ς = x′i〉, respectively.

Trials of the agent in the environment at each time step
compose a stream that must be learned incrementally.
Decision tree induction research propose incremental

algorithms (Utgoff, 1986) able to build a decision tree
Tree(F) representing a factored representation of F
from a stream of examples 〈A, ς〉.

Moreover, using decision tree induction allows the
agent to generalize from its history. Actually, visit-
ing all the possible state/action pairs is infeasible in
large problems. Unlike tabular representations, deci-
sion trees are able to propose a default class distribu-
tion for examples that have not been presented. Con-
sequently, by generalizing from its history, an agent
may be able to choose an adequate action even in
states not visited yet.

In spiti, we use the decision tree induction algo-
rithm named iti (Utgoff et al., 1997) and noted
ITI(Tree(F),A, ς). We refer to Utgoff et al. (1997)
for a complete description of iti.

Input: s, a, s′, Tree(Rt−1), Tree(Tt−1)
Output: {Tree(Rt), Tree(Tt)}

1. A ← {x1, . . . , xn}

2. Tree(Rt)← ITI(Tree(Rt−1),A
S
{a}, r)

3. Tree(Tt)← Tree(Tt−1)

4. For all i ∈ |X|:
Tree(CPDa

Xi
∈ Tt)←

ITI(Tree(CPDa
Xi
∈ Tt−1),A, x′i)

5. Return {Tree(Rt), Tree(Tt)}

Figure 2. spiti (1): the Learn algorithm.

Figure 2 describes the Learn algorithm in spiti. As
shown in step 2, the reward learning algorithm is
straightforward. An example is composed of the vec-
tor s = (x1, . . . , xn) and the action a, while its class ς
is defined as the reward r received by the agent. The
example is then learned by iti that builds a model of
the reward function as a tree with the leaves labeled
with the values r ∈ IR.

The transition model Ta of the action a is com-
posed of the graph Ga and the set of CPDa =
(CPDa

X1
, . . . ,CPDa

Xn
). As illustrated in step 4, we

propose to learn separately each CPDa
Xi

as a deci-
sion tree without trying to build the complete dbn
Ga. One tree is used to represent each CPDa

Xi
. This

tree is built by learning examples composed of the vec-
tor s = {x1, . . . , xn} while the class ς is defined as the
instantiation of X ′

i in the state s′ of the system1. This
method is justified because we suppose no synchronic

1Instead of having a different Tree(CPDa
Xi

) for each
action and for each variable, one may maintain only one
Tree(CPDXi) for each variable by adding the action a to
the set of attributes A. We did not consider this case in

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems

arc (thus, we have X ′
i |= X ′

j |X1, . . . , Xn).

Time t Time t + 1

X0

X1

X2

X′
0

X′
1

X′
2

Tree(CPDX0): Tree(CPDX1): Tree(CPDX2):

0.8 1.0 1.00.8

X1 X2

X1

0.8

FalseTrue

0.3

Figure 3. Structure of a dbn G from a set of decision trees
{Tree(CPDXi)}. In Tree(CPDX2), the leaf labeled 0.3
means that the probability for X ′

2 to be true is P (X ′
2|X1 =

False, X2 = False) = 0.3.

The probability CPDa
Xi

(X ′
i|Parentsa(X ′

i)) is com-
puted at each leaf of Tree(CPDa

Xi
) from the training

examples present at this leaf. The sdyna framework
does not require to explicitly build the global structure
of the dbns. However, one can build each dbn Ga by
assigning to Parentsa(X ′

i) the set of variables Xi used
in the tests in each Tree(CPDa

Xi
) (see figure 3 for an

example).

Example of Tree(CPDX0)

learned with no χ2 test:
Definition of Tree(CPDX0):

FalseTrue
X0

0.21.0 1.0

X0

X1

0.18 0.23

Figure 4. A test of independence between two probability
distributions is required to avoid unnecessary tests in the
tree (as shown with the X1 variable test). Such a test
is not required for deterministic transitions (i.e. the leaf
containing the probabillity of 1.0).

To determine the best test to install at a decision node,
decision tree induction algorithms are based on an
information-theoric metric. This metric is computed
for each attribute νi ∈ A. Different metrics have been
proposed such as gain ratio, Kolmogorov-Smirnoff or
χ2. In spiti, we use χ2 because the metric can also be
used as a test of independence between two probability
distributions, as suggested by Quinlan (1986).

Indeed, an action a executed in similar states s =
{x1, . . . , xn} may have different effects in stochas-
tic problems. When learning Tree(CPDa

Xi
), exam-

this paper.

ples with similar set of attributes but different class
must be classified at the same leaf because they fol-
low the same probability distribution. In figure 4, we
define P (X ′

0|X0 = False) = 0.2. Thus, the exam-
ples 〈{X0 = False,X1 = False}, X ′

0 = True〉 and
〈{X0 = False,X1 = True}, X ′

0 = False〉 must be
classified in the same leaf. In spiti, we use a χ2 test
to check the independence between two probability
distributions (P (X ′

0|X0 = False,X1 = False) and
P (X ′

0|X0 = False,X1 = True) in figure 4). Thus,
a decision node is installed only if the χ2 value as-
sociated with the test to install is above a threshold,
noted τχ2 . The problem does not occur for determin-
istic transitions.

3.2. SPITI: Factored Planning

The planning algorithm in spiti is a modified incre-
mental version of the Structured Value Iteration (svi)
algorithm proposed by Boutilier et al. (2000). svi is
adapted from the Value Iteration algorithm using de-
cision trees as factored representation. It is described
in figure 5.

Input: 〈Ga|Pa〉, Tree(R) Output: Tree(π∗)

1. Tree(V)← Tree(R)

2. Repeat until termination:

(a) ∀a ∈ A : Tree(QV
a)← Regress(Tree(V), a)

(b) Tree(V) ← Merge({Tree(QV
a) : ∀a ∈ A}) (us-

ing maximization over the value as combination
function).

3. ∀a ∈ A : Tree(QV
a)← Regress(Tree(V), a)

4. Tree(π)←Merge({Tree(QV
a) : ∀a ∈ A}) (using max-

imization over the value as combination function and
placing the action as label of the leaf).

5. Return Tree(π)

Figure 5. The Structured Value Iteration (svi) algorithm
from Boutilier et al. (2000).

svi uses two operators. First, Regress(Tree(V), a)
produces the action-value function Tree(QV

a) repre-
senting the expected value of performing the action
a with respect to the value function Tree(V). Thus,
step 2.a and 3 compute eq. (1) for action a and for all
states s using tree representations.

Second, Merge({T1, . . . , Tn}) produces a single tree
containing all the partitions occurring in all the trees
T1, . . . , Tn to be merged, and whose leaves are la-
beled using a combination function of the labels of

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems

the corresponding leaves in the original trees2. In step
2.b and 4, the value function Tree(V) and the policy
Tree(π) respectively, are built by selecting for all the
partitions occuring in all the trees the action with the
best associated value Tree(QV

a). We refer to Boutilier
et al. (2000) for a comprehensive description of both
Merge and Regress operators.

Using svi without modifications in spiti is feasible but
not practical for two reasons. First, svi would improve
the value function until convergence despite an incom-
plete model. Second, the output of svi is a greedy pol-
icy which may not be adapted in a problem where the
transition and reward functions are unknown. In such
problems, the agent needs to explore by trying actions
that may not be optimal given its current knowledge.
Thus, we propose a modified version of svi in spiti as
described in figure 6.

Input: Tree(Rt), Tree(Tt), Tree(Vt−1)
Output: Tree(Vt), {∀a ∈ A: Tree(Qt(s, a))}

1. ∀a ∈ A : Tree(Qt(s, a))← Regress(Tree(Vt−1), a)

2. Tree(Vt) ← Merge({Tree(Qt(s, a)) : ∀a ∈ A}) (using
maximization over the value as combination function).

3. Return {Tree(Vt), {∀a ∈ A : Tree(Qt(s, a))}}

Figure 6. spiti (3): the Plan algorithm based on svi.

At each time step, the Plan algorithm computes one
iteration of svi and updates the mapping from an ac-
tion a to a structured representation of its correspond-
ing action-value function Tree(Qt(s, a)). Then, this
mapping is used in the acting phase by the exploration
policy, i.e. ε-greedy or softmax action selection (Sut-
ton & Barto, 1998). The greedy policy is built by
selecting the best action in state s according to the
expected values returned by Tree(Qt(s, a)).

The value function Tree(Vt) associated to the greedy
policy is also computed by merging the set of action-
value functions {Tree(Qt(s, a)) : ∀a ∈ A} (using max-
imization as combination function). Tree(Vt) is then
reused at time t + 1 to compute the action-value func-
tions Tree(Qt+1(s, a)). If the transition model and the
reward function learned by the agent are stationary,
Tree(Vt) converges in a finite number of time steps
to the optimal value function Tree(V ∗) given the cur-
rent knowledge of the agent (Boutilier et al., 2000).
However, as long as the model of the agent is not suffi-
ciently accurate, Tree(V ∗) may be significantly differ-
ent from the optimal value function of the rl problem
to solve.

2The combination function used during the merge pro-
cess is noted in the description of the algorithm using it.

4. Results

Empirical evaluations of spiti have been run on two
problems3, namely Coffee Robot and Process Plan-
ning , defined in (Boutilier et al., 2000). For each
problem, we compared spiti to dyna-q. For both
algorithms, we used γ = 0.9 and the ε-greedy explo-
ration policy with a fixed ε = 0.1. In dyna-q, we
used α = 1.0 and set N equals to twice the size of the
model. The function Q(s, a) is initialized optimisti-
cally. In spiti, the threshold τχ2 used in the χ2 test
to detect the independence between two distributions
was set to 10.6 (corresponding to a probability of in-
dependence superior to 0.99).

We also ran two agents, noted random and opti-
mal, executing at each time step, respectively, a ran-
dom action and the best action. The random agent
learns a transition and reward models using LearnR
and LearnT algorithms from spiti. The policy of
optimal has been computed off-line using svi with
the span semi-norm as a termination criterion using
a threshold of 0.01. The transition and the reward
model of the optimal agent are the static decision
trees defining the problem.

To allow the agents to perform multiple trials in the
same problem, a set of initial states and a set of ter-
minal states are added to the problem definitions. As
soon as an agent is in a terminal state, its new state is
then initialized randomly in one of the possible initial
states using a uniform distribution (whatever the ac-
tion executed by the agent). Each agent is evaluated
T time steps during an experiment.

We specifically focused on the discounted reward Rdisc

obtained by the agent and the size of its transition
model built from its history. Rdisc

t at time t is defined
as follows: Rdisc

t = rt + γ′Rdisc
t−1 with rt the reward

received by the agent and γ′ = 0.994. We do not
show results concerning the size of the reward function
because they are similar to the results concerning the
size of the transition model. Moreover, we did not
focus on the size of the value function computed or the
time required for executions because Boutilier et al.
(2000) provide exhaustive results on this topic.

4.1. Coffee Robot Problem

The Coffee Robot problem5 is a small stochastic prob-
lem where a robot has to go to a café to buy some

3Their complete definitions can be found on the spudd
website http://www.cs.ubc.ca/spider/jhoey/spudd/spudd.html.

4γ′ = 0.99 makes the results more readable.
5This problem is labeled as ”Coffee” on the spudd web-

site.

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems

coffee and return it to its owner. The problem is com-
posed of 4 actions and 6 boolean variables (defining
26 ∗ 4 = 256 state/action pairs). The terminal states
are states where the user has a coffee. The set of initial
states is composed of all non-terminal states. We run
30 experiments for each agent with T = 4000.

0 500 1000 1500 2000 2500 3000 3500 4000
Time

0

5

10

15

20

25

D
is

c
o
u

n
te

d
 r

e
w

a
rd

Optimal
Spiti

Random
DynaQ

Figure 7. Discounted reward obtained from the Coffee
Robot problem.

Figure 7 shows the discounted reward obtained by each
agent. Both dyna-q and spiti behave similarly on
a small problem and quickly execute a near optimal
policy (in approximately 1000 time steps). However,
they do not execute an optimal policy because of the
ε-greedy exploration policy.

0 500 1000 1500 2000 2500 3000 3500 4000
Time

0

20

40

60

80

100

120

140

N
u

m
b

e
r

o
f

n
o
d

e
s

Optimal
Spiti

Random
DynaQ

Figure 8. Size of the transition model learned from the Cof-
fee Robot problem.

Figure 8 compares the different sizes of the transi-
tion model learned by spiti, dyna-q and random.
The number of nodes of the model built by dyna-q is
equal to the number of transitions in the problem (128

entries because a terminal state does not have tran-
sitions). The model learned by spiti and random
is significantly smaller (less than 90 nodes) because
they build a structured representation of the problem.
The discounted reward obtained by spiti (figure 7)
shows that this representation is exploited by the plan-
ning algorithm to compute incrementally a near opti-
mal policy. Moreover, because they are based on the
same learning methods, the transition model learned
by random and spiti are similar in size despite their
different policies.

4.2. Process Planning Problem

The Process Planning problem6 is a stochastic prob-
lem from a manufacturing domain composed of 14
actions and 17 binary variables (defining 217 ∗ 14 =
1, 835, 008 state/action pairs). A product must be
achieved by attaching two manufactured components
together. High quality components can be produced
by using actions such as hand-paint or drill; low qual-
ity components can be produced by using actions such
as spray-paint or glue. The agent must produce low
or high quality components depending on the demand.
Terminal states are states where two components are
attached together. Initial states are all non-terminal
states from which there is at least one policy to get
to a terminal state. We run 20 experiments for each
agent with T = 10000.

0.0 0.2 0.4 0.6 0.8 1.0
Time x1e4

0

10

20

30

40

50

60

70

80

D
is

c
o
u

n
te

d
 r

e
w

a
rd

Optimal
Spiti

Random
DynaQ

Figure 9. Discounted reward obtained on the Process Plan-
ning problem.

Figure 9 shows the discounted reward obtained by each
agent. spiti executes a near optimal policy in approx-
imately 2000 time steps unlike dyna-q which, after
10000 steps, is still improving its policy. This differ-

6This problem is labeled as ”Factory” on the spudd
website.

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems

ence illustrates the generalization property of decision
tree induction algorithms. From the agent history,
spiti is able to compute a policy which may propose a
good action for states that have not been visited yet.
On the contrary, dyna-q must try all the state/action
pairs before considering them during planning.

0.0 0.2 0.4 0.6 0.8 1.0
Time x1e4

0

1000

2000

3000

4000

5000

6000

7000

N
u

m
b

e
r

o
f

n
o
d

e
s

Optimal
Spiti

Random
DynaQ

Figure 10. Size of the transition model learn in the Process
Planning problem.

Figure 10 shows the size of the transition model
learned by the agents. Similarly to the Coffee Robot
problem, the space requirements of the tabular repre-
sentation of dyna-q grow exponentially with the num-
ber of variables and actions of the problem. On the
contrary, spiti quickly builds a compact representa-
tion of the problem sufficiently accurate to perform a
policy similar to optimal (figure 9).

0.0 0.2 0.4 0.6 0.8 1.0
Time x1e4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V
is

it
e
d

 s
ta

te
/a

c
ti

o
n

 c
o
u

p
le

s

x1e-3

Optimal
Spiti

Random
DynaQ

Figure 11. Proportion of state/action pairs visited on the
total number of pairs existing in the Process Planning
problem

Figure 11 shows the number of state/action pairs vis-

ited by each agent. It illustrates the intensive explo-
ration of random and dyna-q in large problem com-
pared to spiti or optimal. Unlike dyna-q and de-
spite an important number of state/action pairs, the
model learned by random is similar in size to spiti
showing that the size of the model mainly depends on
the structure of the problem and not on the number
of visited state/action pairs.

5. Discussion

fmdp methods exploit a given exhaustive and struc-
tured representation to compute an optimal or near-
optimal policy in large problems. The first contribu-
tion of this paper was to propose sdyna, a indirect rl
framework able to use powerful planning techniques
in structured rl problem where the reward and tran-
sition functions are unknown. We described an instan-
tiation of sdyna, called spiti, combining a modified
version of svi with iti, a decision tree induction al-
gorithm used to learn the structure of a rl problem.
We showed that spiti performs better than dyna-q,
an indirect rl algorithm using tabular representations.
Further work is still necessary to compare the sdyna
framework to direct rl approach based on factored
representations such as McCallum (1995).

Some alternative planning algorithms to svi have been
proposed, such as spudd (St-Aubin et al., 2000) or
techniques based on Linear Programming algorithms
(Guestrin et al., 2003). These techniques have been
shown to perform better in speed or memory than
svi. Our incremental version of svi was the most
straightforward planning method to validate our ap-
proach. We are currently working on integrating some
of these more efficient planning methods in sdyna.

These planning methods would not fundamentally
change the results presented in this paper. As we have
shown above, the size of the learned model does not
strictly depend on the policy of the agent. Moreover,
given a model at time t, two greedy policies computed
by two different planning algorithms would have simi-
lar value functions. However, using more efficient plan-
ning methods would allow spiti to address larger rl
problems.

The second contribution of this paper is to illustrate
the generalization property of using decision tree in-
duction algorithms within the fmdp framework. In
spiti, this property depends on the value of the thresh-
old τχ2 used in the χ2 test to detect the independence
between two distributions. This parameter drives the
decision node creation process in iti between two ex-
trema (in a fully stochastic problem): Parentsa(X ′

i) =

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems

∅ and Parentsa(X ′
i) = {∀i, Xi}. In the empirical

studies described in this paper, we set τχ2 = 10.6 to
split two distributions when the probability of inde-
pendence returned by the χ2 test was superior to 0.99.
We believe that further work is necessary to analyze
the dependencies between the value of τχ2 , the size of
the learned model and the consequences on the quality
of the policy computed during the planning phase.

Furthermore, the generalisation property is necessary
for designing exploration policies in large problems
because it may render an exhaustive exploration un-
necessary, as we have shown above with the ε-greedy
exploration policy. Recent research on the explo-
ration/exploitation tradeoff has yielded more efficient
algorithms such as Factored E3 or Factored Rmax

(Guestrin et al., 2002) with relevant theoretical guar-
antees but with strong assumptions on the fmdp to
solve. Thus, further work will be necessary to inte-
grate these algorithms in sdyna to handle the explo-
ration/exploitation dilemma while the structure of the
fmdp is built incrementally.

6. Conclusion

In this paper, we have presented sdyna, an architec-
ture designed to integrate planning, acting and learn-
ing in the context of fmdps. Through one instantia-
tion of sdyna called spiti, we have shown that this
architecture can build a compact representation of the
model of a rl problem with an unknown structure
by using decision tree induction algorithms. Further-
more, we have shown that for a given set of visited
states, the generalization property of this method re-
sults in a faster policy improvements than methods
using tabular representations.

Acknowledgement

Thanks to the anonymous referees for their sugges-
tions. We also wish to thank Christophe Marsala and
Vincent Corruble for useful discussions.

References

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Ex-
ploiting Structure in Policy Construction. Proceedings of
the Fourteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI-95) (pp. 1104–1111). Montreal.

Boutilier, C., Dearden, R., & Goldszmidt, M. (2000).
Stochastic Dynamic Programming with Factored Rep-
resentations. Artificial Intelligence, 121, 49–107.

Chickering, D. M., Heckerman, D., & Meek, C. (1997). A
Bayesian Approach to Learning Bayesian Networks with
Local Structure. Proceedings of the 13th International

Conference on Uncertainty in Artificial Intelligence (pp.
80–89).

Dean, T., & Kanazawa, K. (1989). A Model for Reasoning
about Persistence and Causation. Computational Intel-
ligence, 5, 142–150.

Friedman, N., & Goldszmidt, M. (1998). Learning
Bayesian Networks with Local Structure. Learning and
Inference in Graphical Models. M. I. Jordan ed.

Guestrin, C., Koller, D., Parr, R., & Venkataraman,
S. (2003). Efficient Solution Algorithms for Factored
MDPs. Journal of Artificial Intelligence Research, 19,
399–468.

Guestrin, C., Patrascu, R., & Schuurmans, D. (2002).
Algorithm-Directed Exploration for Model-Based Rein-
forcement Learning in Factored MDPs. ICML-2002 The
Nineteenth International Conference on Machine Learn-
ing (pp. 235–242).

Hoey, J., St-Aubin, R., Hu, A., & Boutilier, C. (1999).
SPUDD: Stochastic Planning using Decision Diagrams.
Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence (pp. 279–288). Morgan Kauf-
mann.

McCallum, A. K. (1995). Reinforcement Learning with Se-
lective Perception and Hidden State. Doctoral disser-
tation, Department of Computer Science, University of
Rochester, USA.

Quinlan, J. R. (1986). Induction of Decision Trees. Ma-
chine Learning, 1, 81–106.

Sallans, B., & Hinton, G. E. (2004). Reinforcement Learn-
ing with Factored States and Actions. Journal of Ma-
chine Learning Research, 5, 1063–1088.

St-Aubin, R., Hoey, J., & Boutilier, C. (2000). APRI-
CODD: Approximate Policy Construction Using Deci-
sion Diagrams. NIPS (pp. 1089–1095).

Sutton, R. S. (1990). Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. Proceedings of the Seventh International
Conference on Machine Learning (pp. 216–224). San
Mateo, CA. Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learn-
ing: An Introduction. MIT Press.

Utgoff, P. (1986). Incremental Induction of Decision Trees.
Machine Learning, 4, 161–186.

Utgoff, P. E., Nerkman, N. C., & Clouse, J. A. (1997). De-
cision Tree Induction Based on Efficient Tree Restruc-
turing. Machine Learning, 29, 5–44.

Watkins, C. J. C. H. (1989). Learning with Delayed Re-
wards. Doctoral dissertation, Psychology Department,
University of Cambridge, England.

